
The Ensemble Engine: Next-Generation Social Physics

Ben Samuel, Aaron A. Reed, Paul Maddaloni, Michael Mateas, Noah Wardrip-Fruin
University of California Santa Cruz, Expressive Intelligence Studio

{bsamuel, aareed, pmaddalo, michaelm, nwf}@soe.ucsc.edu

ABSTRACT
Despite being central to many game stories, dynamic social
relationships in video games are difficult to make playable in
meaningful ways. To help address this issue, this paper presents
the Ensemble Engine (EE), the first publicly available “social
physics” engine. The Ensemble Engine is inspired by the lessons
learned from more than five years building the Comme il Faut
(CiF) social physics engine, and a number of games employing it
(including Prom Week). The Ensemble Engine retains the most
successful aspects of CiF, while also making major improvements
in areas such as the flexibility of its action structure and
expressivity of its rules. The system is authored in an open-
standard language (JavaScript) and includes an authoring tool to
increase accessibility for game researchers and creators. Through
these improvements and this dissemination strategy, the Ensemble
Engine represents an opportunity for the potential of social
physics to become much more broadly explored.

Categories and Subject Descriptors
K.8.0 [Personal Computing]: General – Games. I.2.4 [Artificial
Intelligence]: Knowledge Representation Formalism and Methods
– Representations (procedural and rule-based).

General Terms
Design

Keywords
Game design, social simulation, interactive narrative, authoring
tools, javascript.

1. INTRODUCTION
Social relationships are important to the stories of many games.
The dramatic twists and turns of social relationships are central to
action-adventure titles (e.g., the Uncharted [15] games), role-
playing games (e.g., the Final Fantasy [20] series), and even
survival games (e.g. State of Decay [24]). Unfortunately, players
can almost never directly influence these relationships, which
usually change at fixed, predetermined progression points in the
game. By contrast, other systems within games (such as combat)
do allow the player to have direct influence and agency..

Some games have provided somewhat more dynamic social
relationships. For example, some role-playing games allow the
player character to move relationship values up and down with
non-player characters, gating the possibility of character-specific

content such as quests, battles, and romances [1]. But these
systems are simple, and interactions with them are limited, such
that players are not engaged in the same sense as, for example,
they are with same game’s combat systems.
The standout example of playable social interactions is The Sims
[22], which is a hugely successful series, though rarely effectively
imitated. But The Sims is also quite limited in the potential to have
specific realizations of social interactions (e.g., characters cannot
use language), the meaningful use of history, the involvement of
multiple characters in actions, and so on. Other popular and
critically acclaimed games such as Telltale’s The Walking Dead
[26] present the illusion that characters have richer memories and
social relationships than they actually possess [9], meaning that
these dynamics ultimately never strongly influence the game’s
plot .
In recent years, a different approach to social dynamics has
emerged, one that we call “social physics” [12]. It is influenced by
social psychology [7] and some computational representations of
social behavior [3, 11]. This idea enables dynamic social
interactions to become the centerpiece of a game, and for the
events and developments in its social world to be richly
represented. The two primary examples of social physics engines
so far are the Comme il Faut system (abbreviated CiF, and used to
create Prom Week [14], Mismanor [21], a game for the SIREN
conflict resolution project [27], among other playable
experiences), and the Versu system (used to create a Regency-era
comedy of manners, a set of modern office comedy stories, and
the ambitious Blood and Laurels) [5].

Unfortunately, both of these systems have only been available to
their creators and those working directly with them. This has
made it impossible for a wider group of game creators to explore
the possibilities of social physics. It has also prevented social
physics gameplay from being combined with other types of
gameplay, a potentially fruitful marriage for genres ranging from
Role Playing Gamess to Twine stories (Twine is a tool for
creating interactive, nonlinear stories [23]).
In response, we introduce the Ensemble Engine (EE), a freely-
available social physics engine1. The design of the system is
directly informed by our experience of more than five years of
building the CiF system, and using it to create multiple games.
Put simply, a social physics system looks at all of the social
factors impacting a character, or group of characters, and
determines how the characters might best react to the current
social state to suit their desires, as well as directly changing the
social state itself (as appropriate). EE’s most notable features—in

1 The Ensemble Engine is being actively developed at the time of
this writing. The latest version of the engine and its
documentation, along with a sample game, tutorials, and
authoring environment, can be found at
https://games.soe.ucsc.edu/project/ensemble-engine.

addition to being the first available social physics engine—are
flexibility, being domain-agnostic, and ease of use.

CiF was originally written in ActionScript3, and developed in
conjunction with the game Prom Week [13, 14]. Prom Week is an
example of AI-based game design [4], a paradigm in which an AI
architecture and a game using that AI are developed in tandem to
expand the expressive range of both systems. Prom Week, and by
association CiF, received recognition as a technical feat: Prom
Week was selected as a finalist in the 2012 IndieCade festival
main competition, and was a finalist in the 2012 Independent
Games Festival competition in the category of Technical
Excellence. It also garnered praise (and some touchingly personal
anecdotes of play sessions) from reviewers in both games and
story-oriented contexts [10, 16].

Heartened by the success of CiF, and inspired to overcome some
of the system’s design challenges, the authors were driven to
create the Ensemble Engine: a next-generation social physics
engine with a focus on enhanced expressivity and accessibility.
The Ensemble Engine boasts a flexible action structure,
expressive social rules which govern character behavior, and
comes bundled with a powerful authoring interface. This new
engine is the next iteration of CiF-style social physics, completely
re-written from the ground up in JavaScript, currently the
dominant language for web-based playable experiences.
JavaScript was chosen to allow for rapid prototyping of ideas,
flexibility in usage for projects, and its wide coverage of
platforms, from PC to mobile.

Besides Prom Week, CiF and its metaphors have been
successfully used in a variety of projects thus far, and have
worked well within their parameters. It has been used in a
DARPA funded project for cultural training. The social
interactions baked into this simulation employed the affordances
given by the social engine, and more information can be found in
our AIIDE and AAMAS papers [18, 19]. Additionally, an earlier
iteration of the Ensemble Engine was utilized in a non-disclosed,
complete game prototype in collaboration with a major game
studio, for which we expect to report to the game community
within a year.

It is completely domain agnostic, and its social structures can be
customized to suit the needs of any social world. We have
implemented (and describe below) a new action structure, more
expressive rules, and an improved authoring tool.

While our primary motivation for creating the Ensemble Engine is
to aid the spread of social physics, a secondary motivation is to
make a family of artificial intelligence techniques more broadly
available to both independent game creators and game
researchers. We are working with game researchers to discover
new approaches enabled by the Ensemble Engine, as well as
working it into an introductory game design course to help inspire
new generations of game designers. The Ensemble Engine
approach to rule authoring and action nomination has the potential
to make a variety of innovative game projects easier to create, and
we look forward to helping explore them as widely as possible.

2. EXPRESSIVE FEATURES
This section will cover several of the features that give the
Ensemble Engine its ability to represent complex social worlds

• The Ensemble Engine allows users to easily specify the
categories of social state in the world via a schema.
Once these categories are defined, users can reference

them in social rules to govern the considerations of the
entities that populate their playable experience.

• Moreover, the rules of the Ensemble Engine are capable
of describing and referencing complicated social
situations involving any number of characters.

• The Ensemble Engine also introduces a new structure
for character actions. These actions take advantage of
EE’s enhanced rule structure and a character-to-role
binding process for increased authoring flexibility.

2.1 Introduction of Schema
The schema (see Figure 1) is an easy way for users of the
Ensemble Engine to define the categories of state in their system.
This section begins by describing how state is internally
represented in EE. We explain how the data-driven schema
system of the Ensemble Engine can be tailored to the specifics of
any given playable experience. We then detail the specifics that
make up a category defined by a schema and the advantages
schemas have over hard-coded alternatives. Finally, we discuss
other ways that the Ensemble Engine and its users benefit from a
data-driven approach.

2.1.1 Categories in the Ensemble Engine
One of the primary responsibilities of the social engine is to track
state. The truths of the diegetic world are stored in a Social
Record (SR). Some example SR records from Prom Week include
character descriptors (e.g., Monica has the trait arrogant and the
status popular), mutual relationships between two characters (e.g.,
Simon and Zack are friends), and non-reciprocal directed attitudes
from one character to another (e.g., Gunter has an affinity of 87
for Phoebe).

In the original CiF, the categories of traits, statuses, and
relationships could each be thought of as a category of social
facts, and any given social fact of a category referred to a specific
type within that category. Some trait types present in Prom Week
include arrogant, jealous, brainy, attractive, strong, and clumsy.
Some Prom Week status types include being popular, feeling sad,
and feeling angry. The relationship types in Prom Week are
friendship, enemies, and dating.

These categories were created in the service of Prom Week,
though in retrospect there was some undesirable overlap between
them. For example, traits were meant to be immutable facets of a

Figure 1. Data flow of schema package components. Social
world authors create a schema package. After a validation

process, elements of the schema package populate the initial
state of the social record, and the action and rule libraries.

character, whereas statuses represented more ephemeral states or
moods, which would eventually fade away unless the source of
the status persisted. Statuses were additionally broken into two
distinct types of “directed” and “undirected,” identical except in
whether they referred to a status between two characters (such as
being angry at someone) or a single character (such as feeling
happy).

The distinctions between these three categories, which evolved
during the design of a specific social game were a bit
unclearclasses were a bit fuzzy. Though directed statuses,
undirected statuses, and traits are three unique concepts, they
shared certain properties, such as all referring to Boolean aspects
of state. Common properties were noted among other
classescategories as well (e.g., an affinity score from one
character to another is in many ways a scalar version of a directed
status). Realizations such as these helped the authors derive
common properties between social facts such as isBoolean to
distinguish between a fact referencing a boolean (e.g., traits and
statuses) or a scalar (e.g., networks such as affinity). Similarly,
there seemed to be three primary directionTypes: undirected
(traits, statuses), directed (networks, directed statuses), and
reciprocal (relationships). Once these common properties (and
others, see section 2.1.2) were recognized, they became the basis
for defining a social schema. In short, the Ensemble Engine’s
social categories are determined by these defining properties,
rather than hard-coded and imposed by the system.

The properties of each category affect how the Ensemble Engine
processes that category. The Ensemble Engine does not have a
separate evaluation function for each category; it breaks
functionality up by properties. For example, all code dealing with
Booleans is defined in one place, as is all code dealing with
reciprocity.

Thanks to this design choice, it became easier to describe the
distinctions of different categories, and to mix and match
properties to generate entirely new categories. The larger variety
of categories enabled by doing this allows social physics to be
applied to a wider variety of game genres. For example, it is now
relatively simple to define a new category that describes numeric
facts that only apply to an individual character. Individual
numeric traits are part of many games, including most role-
playing games that might make use of numbers such as these to
represent character attributes like strength, agility, and charisma.

EE also uses a data-driven approach to allow for the easy editing
of categories. Users can edit a JSON file called a schema, which
contains all of the types for their playable experience. The
Ensemble Engine then reads it in, and makes use of the contents
of this file. The rules written by the user are validated, and it
ensures that the types referenced in the rules are specified in the
schema file, raising an error if there is a mismatch, and then
directing the user to the file with the offending rule.

2.1.2 The Components of Categories in the Ensemble
Engine
To give a sense of the range of categories that can be created in
the Ensemble Engine, we present the properties that can be
defined:
category – A string representing the name of the category.
isBoolean – If true, the category represents a Boolean fact. The
category is a scalar if this is set to false.

directionType – Can be “directed” (affects two or more entities,
from one to others), “undirected” (applies to only one entity), or

“reciprocal” (meaning that the category affects two entities, and
will always be the same value between the two entities). If used in
the spirit of the original CiF, these entities will most likely take
the form of characters in the playable experience. If used outside
of a social-based context, these entities could be anything that
have a relation to each other, e.g. floors in a procedural dungeon
generator, the properties of a texture, or the rules to a game itself.
This ability allows the use of non-character elements of a game to
act more dynamically and change based on rules provided to EE.
(Any future reference to characters in this paper is shorthand for
both traditional agents and these more abstract entities.)
types – An array of strings representing the potential
typesinstances of the classcategory (e.g., the “status”
classcategory might have types popular, sad, and happy).
defaultValue – The initial value for each type applied to all
characters at the start of a playable experience, unless otherwise
specified. Should be true or false if isBoolean is true, or an integer
otherwise.
duration – How many discrete time steps the classcategory
should remain true, if boolean. If unspecified, assumed to be
infinite. Ensemble keeps track of time via these time steps, which
are incremented when the client game choses to do so.
minValue/maxValue – The minimum and maximum value types
of this category, if numeric.
actionable – A boolean value specifying whether this category is
permitted to be part of character intent formation. One of the key
components of the Ensemble Engine is calculating volitions (i.e.
desires) of characters and determining the actions they want to
take, in hopes of adjusting the current social state to fulfill these
desires. Any category can potentially be the subject of intent
formation if actionable is set to true. Though the terminology is
steeped in social metaphor, intents are largely a means of
categorizing actions, with the volition formation process acting to
nominate an action for performance within one of these
categories. Though the internal terminology feels best suited for a
system with agents forming volitions, the Ensemble Engine works
just as well for more abstract entities “taking actions” to change
their qualities and their connections to other entities.

2.1.3 Benefits of the Ensemble Engine Category
Structure
The new category structure of the Ensemble Engine is very
flexible. In addition to being customizable—category names such
as “relationships” and “statuses” can be named by the user to
terms they find more appropriate—the system has significantly
enhanced expressive power through the new combinations of
categories now accessible by EE.

Some of these new combinations, such as the aforementioned
individual numeric traits, make the Ensemble Engine more
compatible with existing game genres and conventions. Through
experimentation, some interesting atypical combinations can be
discovered. For example, a category with isBoolean set to true, a
finite duration and a default value of true could represent a
condition that will keep recurring unless characters actively work
to prevent it from happening, such as in a social world where
sickness is the norm and taking medication only temporarily
alleviates it.

In short, users of the Ensemble Engine have the power to define
novel categories that are pertinent to their playable experience.

2.1.4 Other Schemata Components
The schema file is only one part of the new data-driven approach
employed by Ensemble. Other files allow Ensemble Engine users
to specify information pertaining to the characters (or other
entities) of the world (the cast), the starting history of the world
(backstory between characters, or any starting state that differs
from the default values specified in the schema file), the trigger
and volition rules of the world (discussed in more detail below),
and the actions that the cast can take in the world (also discussed
below).
The data-driven approach also allows for faster iteration, with
changes seen as soon as the game is restarted. One of the greatest
hurdles while developing Prom Week was the slow compilation
pipeline; expediting this process should make development with
the Ensemble Engine more pleasant.

2.2 Social Rules
In a world driven by a social engine, the cast-held considerations
that govern intent formation are defined through rules. The left-
hand side, or LHS, of rules is comprised of a collection of
predicates, where each predicate asks a question pertaining to a
single fact of the current state of the world. If all of the predicates
of the LHS of the rule hold true, then the right-hand side (RHS) of
the rule is valuated. The two different types of rules have different
content in the RHS. Volition rules will either add to or detract
from a cast member’s desire to perform certain types of actions.
Trigger rules will directly change the state of the world by adding
to or removing records from the SR if the LHS of the trigger rule
is met. This is the general functionality of rules from the original
CiF, and this structure has not changed much for EE.

What has changed, however, is the binding process of roles in
rules. Any given predicate in a rule involves at most two roles, a
first and a second. If the predicate in question describes a fact
from an undirected category, then only first will be filled in, and
the second will be blank (because the predicate only pertains to a
single person). Otherwise the predicate will involve both a first
and a second character.

It should be noted that even though any given predicate can
involve at most two people, rules could involve more than two
people through a combination of predicates. Take for example a
Social-engine-based representation of the classic adage, “the
enemy of my enemy is my friend.” One could represent the LHS
of this volition rule using three predicates:

1) X and Y are not enemies.

2) X and Z are enemies.

3) Y and Z are enemies.

As we can see, all three of these predicates involve two roles, but
the rule as a whole involves three roles, X, Y, and Z. Of these
three roles, X and Y both dislike Z while not having any
particularly notable disdain for each other. One can imagine the
RHS of this rule would increase X’s volition to befriend Y.

The Ensemble Engine allows for any number of roles to be
defined within a rule. For example, EE could verify if a character
had been the butt of 4 or more practical jokes, or if that character
had made a romantic proposition to 4 or more love interests, while
simultaneously retrieving the names of the jokers or the lovers.
Moreover, it could place additional constraints on the search for
these characters (e.g., find four practical jokers who have the trait
regretful, or potential love interests who already have the dating

relationship with someone else). These refined rules can cover
many nuanced situations that authors might like to affect character
behavior and volition formation.

To illustrate characters reasoning about nuanced situations, we
will use as example the situation where:

1) X and Y used to be dating.

2) Z and Q used to be dating.

3) X and Q are now dating.

4) Y and Z are now dating.

Here, X and Z (or Y and Q, depending on whose perspective you
take) have essentially switched romantic partners. One can
imagine that if this scenario were ever to arise in real life, it would
affect the way that all parties involved view each other. In CiF,
authoring this situation would have been less convenient as it
would have to be captured in more than a single rule. These
additional rules would apply intermediate statuses on the
characters, serving as a faux binding process. These statuses could
then be reasoned over in even more additional rules. Thus, while
not strictly impossible with CiF, EE’s rules can scale with more
than three roles, making it much easier for authors to write for.

One final note on the improvement of rules: though the authors
have been using X, Y, and Z as a shorthand for proper role names
in this paper, any string can be used. As long as the string is
consistently spelled across the predicates of a rule, the Ensemble
Engine will recognize it to be referring to the same role. Although
this may seem like a small change, it is a quality of life
improvement for content authors, making rules more human-
readable during the editing process. Since rule editing occupies
much of a social engine author's time, this small improvement can
lead to an eased development process through prolonged use.

2.3 Flexible Action Structure
After forming volitions based on the current social state, each
character (the initiator) determines how they wish to affect the
world by engaging in a social exchange with another character
(the responder). Actions are tied to a specific intent, which were
discussed in the overview of the schemata. EE has a hierarchy for
actions: Intents in the Ensemble Engine may now be followed by
one or more actions, each of which in turn can point to additional
actions. Actions in the Ensemble Engine are defined in a JSON
file with the following components:

Name: A string representing the name of the action.

Conditions: An array of predicates representing hard
preconditions that must hold true for this action to be considered.
Using a similar binding process to the one described in the
previous section, a record of all potential candidates for each role
in the conditions is kept. If there is no valid binding, the
preconditions do not hold, and the action is deemed impossible for
this particular initiator and responder at the given time step.

Influence Rules: Identical in structure to the volition rules
discussed above, they take an entity's base volition score (or
desire to engage in the action, computed via intent formation), and
add or subtract from that score to modify the entity’s volition for
this particular action. Influence rules tied to actions serve two
functions. First, they help determine which action within a single
intent a character might be more inclined to perform (e.g., a brash
character might prefer to StartDating through a Pick-Up Line,
while a reserved one might opt to simply Ask Out). Second, they

help determine the best candidates for any non-initiator and non-
responder characters specified in the conditions. That is, the
conditions state the required qualities any tertiary characters have,
whereas the influence rules describe their preferred
characteristics.

leadsTo: An array of action names. If all of the conditions hold
for the current action, then the Ensemble Engine will evaluate
each of the actions in the leadsTo array. The starting score of each
of these actions is the ending score of the current action
determined by evaluating its influence rules.

isAccept: Actions are categorized as “accepted” or “rejected”
when the responder character receives the intent of the social
game positively or negatively, respectively. This Boolean value
specifies whether this is an action that should be played when the
responder accepts (true) or rejects (false). Though this concept
was originally implemented in CiF to solve a design problem in
Prom Week, the authors believe its utility generalizes to other
games.

Effects: An array of predicates specifying how carrying out the
action should affect the state of the world. Both the initiator and
responder can be referenced here, as well as any additional
characters bound to roles specified in conditions and influence
rules.

This new structure for actions allows for functionality that was
difficult to implement in CiF. One marked improvement is that
this new system allows actions that refer to more than two people.
Players of Prom Week may recall that some social exchanges did
involve three characters, but the third character was chosen in a
manner that was largely outside of authors’ (and entirely outside
of players’) control. Now, thanks to influence rules being able to
adjust volitions for not only the initiator and responder, but other
characters as well, the Ensemble Engine authors can create actions
that focus on three or more characters.

One such action that the Prom Week authors always wanted to
implement but never could without making severe concessions
was Spread Rumors. As originally envisioned, the player would
select an initiator, a responder, and a victim to be the target of the
rumors. The list of potential victims would be filtered to only
candidates that made sense given their relationship to the initiator
and responder. This proved impossible given CiF's architecture,
and was ultimately implemented in the same way as all other
social exchanges in Prom Week: players selected an initiator and a
responder, and the system selected a third party that simply
satisfied hard preconditions. Although this provided a modicum of
control for authors, the difference between a boolean restriction
and adjusting a weighted volition has serious consequences for an
author's ability to fine-tune social behavior. For instance, if the
initiator’s friend just made a pass at their date, then perhaps the
initiator would want to damage the reputation of their so-called
friend. This social situation is now possible with EE.

Another exciting possibility of this new structure is hierarchical
actions. Authors can define an action structure as simple or
complex as they require, and easily divide up specific actions
more elaborately than others, if more authorial control is needed,
simply by changing a terminal into a nonterminal, which leads to
more granulated, sequential actions. This structure also gives
authors more information about the path taken to reach a certain
terminal. That is to say, users need not only look at the terminal
action (i.e., the deepest action in the hierarchy where all
preconditions are true), but can instead incorporate the entire

lineage of actions that led to that terminal. Through the use of this
lineage, additional context can be gleaned that might affect the
performance of the action, or the effects the action has on the state
of the world, or both. Since a single action can have multiple
parents (i.e., multiple actions that include the action as a child),
there is the potential for myriad variations on any action given the
hierarchy chain that led to it.

Currently the native support to leverage the power of hierarchical
actions of the Ensemble Engine is limited to providing the chain
of actions that led to a terminal action. Taking advantage of the
new action structure will make the Ensemble Engine capable of
expressing even more varieties of actions, and is exciting future
work.

3. NEW AUTHORING TOOL
A new authoring tool has been created alongside the development
of the Ensemble Engine incorporating several design insights
discovered through the use of the authoring tool created for Prom
Week.

3.1 Made by Authors, for Authors
The authoring tool for the Ensemble Engine was built from the
ground up, designed and implemented by the lead author of Prom
Week. By having the authoring environment be designed by an
expert user, who had written hundreds of instantiations and social
rules for the prior version of the system, the Ensemble Engine
design tool was able to include many “wish list” features missing
from the original tool. Beyond being an expert user, the Ensemble
Engine tool designer had prior experience researching and
creating authoring tools and visualizations [6], as well as
constructing whole works of interactive storytelling [17]; this
work also informed the design of the new tool.

As works of interactive storytelling become more dynamic, the
demands on the tools used to craft them will grow more complex
as well. The need for author-programmer-designers, those that
have an intimate understanding of both the requirements of the
tool, and the technical skill to construct it with an eye for user
experience, is already great and will only increase as more
complicated interactive story systems proliferate. However, the
necessity of simple interfaces for authoring, so that creating these
experiences is not limited to a small subset of all possible authors,
also becomes more important. We believe the new authoring tool
represents a substantial step up in usability from our original
version.

Figure 2. Three major processing elements of the
Ensemble Engine.

3.2 The Features of the Tool
When the tool is first opened, the user is prompted to select a
folder that holds a social schema file and associated data (i.e., a
cast of characters, pre-defined history, trigger and volition rules,
etc.). This data populates the various features of the tool. The
authoring tool is split into four major components: a debug
console, an SR History Viewer, a rule viewer for volition and
trigger rules, and a rule editor.

3.2.1 The Debug Console
The debug console simulates a traditional command prompt, and
recognizes a handful of special commands for querying and
changing the state of the rule system. These commands include
adding and removing records from the Social Record, seeing the
volitions of all of the characters given the current social state, and
having characters carry out actions, as well as adding their
consequent effects to the SR.

This enables users to quickly set up social situations and verify
that the system is behaving as intended, and was inspired directly
from the difficulties of authoring in Prom Week. This was most
apparent when testing specific edge cases of social state involved
the time-consuming steps of either recreating the situation through
game play, or setting up the perfect social state by editing (and
rebuilding) the external library of authored content. Including this
debugging functionality in the console encourages a more rapid
cycle of discovering problems, and iterating on rule design, as
well as fixing bugs in the system itself.

3.2.2 The SR History Viewer
Any social changes, either through console commands or as a
result of character actions, are added to the SR History viewer,
along with any records specified in the loaded history file. The
history viewer shows the user what the social state of the world
was at any given point in history, allowing them to observe each
time step of the system. At each time step, the social facts added
that turn are highlighted in green, so the user can pinpoint the
specific moment a change occurred.

As a social world becomes full of trigger rules and complex
actions, it can be difficult to keep a holistic view of the system in
one’s head. The history viewer assists the user in pinpointing the

time step when an undesired social change occurred. This assists
in the discovery of the causal rule or action.

3.2.3 The Rule Viewer
The rule viewer (see Figure 3) provides an overview of all rules
written for the system, showing trigger and volition rules in two
separate tabs. Each rule is summarized with its hand-authored
name (a simple string meant to describe the essence of what the
rule is capturing), as well as a generated natural language
description of the predicates composing the rule. This lets the user
see a large number of rules at a glance. If the user hovers their
mouse over a rule, a tooltip with the original predicate object
appears. If a rule is clicked on, the rule will open in the rule editor
described below.
Rules can be organized into files according to whatever system
the user likes. If there are multiple authors writing rules, each
author might have their own rule file. Alternatively, authors could
split volition rules up into files based on which intent they refer
to, or cluster trigger rules based on the primary change they make
to the social state. The rule's origin file is also displayed in the
rule viewer.

Lastly, the rule viewer can filter rules based on any word that
appears in any part of the rule. This could be the name, any part of
any of the predicates, or the file the rule originates from. This is
useful both for finding a specific rule, but also to quickly see how
many rules have been written for each intent of the system, which
can help guide future authoring effort.

3.2.4 The Rule Editor
The rule editor (see Figure 4) allows one to edit existing rules in
the system, or create new ones. As previously discussed, rules
consist of a descriptive name, a LHS of predicates representing
the conditions that must hold for the rule to fire, and a RHS of
predicates describing what changes should transpire if the LHS
evaluates to true. The editor is designed to make authoring
predicates simpler, and to enforce correctness in their structure
and content.

A predicate is a flexible construct, based on the properties defined
in the user's social schema (see 2.1.2). A directed predicate, for
example, needs to define two characters, while an undirected

Figure 3. The Rule Viewer, showing a filterable list of the volition rules authored in the loaded schema package. Clicking a rule will
open it in the rule editor.

predicate needs to reference only one. Though the authoring tool
for the prior system showed all possible controls for any
predicate, this added unnecessary cognitive load to authors, who
had to think about which controls were contextually appropriate
for any given situation. In the new rule editor, authors specify the
category and type for each predicate added to the rule through a
drop down menu. Once those are selected, the tool generates an
editor for that specific predicate, showing only the currently
relevant controls. For example, if the type is Boolean, then the
author only needs specify if the predicate has to be true or false.
Conversely, if the type is numeric, the author will have to specify
the number and an operator (e.g., affinity greater than 40, less
than 80, etc.). This ability of the tool to alter its context based on
the predicate being authored expedites the authoring process and
eliminates one cause of malformed predicates.
The tool also makes it easier for authors to track character roles
within a predicate. This paper has discussed how any given
predicate can only mention two roles, but a rule can reference as
many roles as the author wishes, each role being determined by a
unique string of the author’s choosing. Authors specify these roles
by filling in text boxes. The tool gives a unique color to each role,
which provides visual confirmation that roles are assigned
correctly; a different color tends to be much easier to catch than a
missing letter. Authors can also click the role slot to cycle through
the roles already established for that rule, further reducing
potential typos and reducing typing time.
Lastly, the rule editor has safeguards to protect authors from
losing work. Authors can undo and redo changes to correct
recently made mistakes—functionality which was much sought-
after in the original tool. The tool also saves a backup copy of the
volition and trigger rule files every time a rule is edited (up to a
user-configurable number of backup files). This provides a history
of the rules (useful for archival purposes, or reverting back to a
recent change), but also mitigates damage done by unexpected
shutdowns of either the tool or computer. These features improve
author confidence, and ameliorates some of the effects of using a

homebrew design tool, which can include crashes or other
unexpected behavior as versions change and the codebase rapidly
evolves.

3.3 Debugging Features
The authoring tool also can test the bindings of the rule being
edited in regards to the current social state established in the
console. When testing bindings, authors select a character for each
role specified in the rule, and the tool reports if the rule would
currently fire given those role bindings. This addresses the
difficulty of easily verifying that abstract rule definitions will
behave as expected when placed into particular social situations, a
frequent difficulty during Prom Week's authoring. When
combined with the SR History Viewer, it gives authors another
tool to diagnose why rules that they believe should fire are failing
to do so (and vice versa).

Though currently a standalone application, we hope to eventually
distribute a browser-based version of the authoring tool that can
be easily integrated with any browser-based Ensemble Engine
experience. This would allow all the debugging functionality of
the authoring tool to operate on the social state generated by a live
EE experience. Authors should be able to open up the tool in the
same window as their playable experience via a keypress and
immediately browse the SR, explore the volitions of their
characters, and verify that any given binding of characters to roles
is behaving as expected. This planned enhancement should help
with debugging immensely.

4. CONCLUSION AND FUTURE WORK
Dynamic and nuanced social relationships are an integral part of
many game stories, as evinced by some of the most popular games
on the market. Unfortunately, most games fall short in making this
vital aspect of these experiences playable, basing social game
progress on prewritten branches or binary quest completion rather
than exploring procedurally driven social relationships. The
authors believe one reason for this is the lack of “off the shelf”
social AI systems available for game developers to pick up and

Figure 4. The Rule Editor, showing a dynamically constructed predicate editor for a volition rule.

plug in to their games. This paper presents EE, the latest iteration
of the social physics engine CiF, as a potential candidate for
fulfilling this role, being for social AI what Box2d [2], Havok [8],
and many others are for Newtonian physics.

EE improves upon its predecessor in a variety of ways, including
more expressive rules, more flexible actions, and a user-friendly
authoring tool that doubles as an Ensemble Engine debugger.
Although the Ensemble Engine has already made marked
improvements, there is still more work to be done. While some
aspects of a social state (such as rules) can be created entirely
within the editor, presently the only way to author elements like
actions is by hand-editing JSON files. Ultimately, we hope the
authoring tool can be extended to eliminate this awkward step.
Once the authoring tool can communicate with playable Ensemble
Engine experiences, a new degree of powerful real-time
debugging will be made possible. Extending the tool to take
advantage of this capability will require hands-on experience
designing and iterating new experiences. We also hope to translate
the Ensemble Engine into additional languages as well; a C#
version is particularly appealing for easy integration with the
Unity [25] game engine.

In addition to improving the Ensemble Engine itself, we hope to
create a website and community for Ensemble Engine authors.
This community would provide a space to showcase work, lend
helping hands, and share influence rules and actions with other
authors. Much like 3D modelers can currently browse databases
of user-created objects, we envision a community where two
authors working on “office comedy” stories could discover and
share sets of relevant social rules with each other.

In the shorter term, a group of students have already taken part in
an Ensemble Engine workshop to learn the basics of the new
system, and a fully-fledged Ensemble Engine jam is planned to
create a sampling of playable experiences. There are also plans to
integrate EE into an introductory games studies class, to help
influence a new generation of game developers.

The Ensemble Engine is actively being developed at the time of
this writing. The latest version of the engine and its
documentation, as well as the authoring tool, tutorials, and a
sample game, can be found at the following URL:
https://games.soe.ucsc.edu/project/ensemble-engine

It is the hope of the authors to see an influx of new digital games
with novel mechanics based on social relationships at their core.
We believe that the Ensemble Engine is a step towards achieving
that goal.

5. ACKNOWLEDGMENTS
This work would not be possible without the hard work that went
into the original Comme il Faut system initially conceived by Josh
McCoy, and further designed with the help of Mike Treanor, both
of whom served as consultants for this latest work. This material
is based upon work supported by the National Science Foundation
Graduate Research Fellowship under grant number NSF DGE
1339067. Any opinion, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

6. REFERENCES
[1] Bioware 2012. Mass Effect 3. Bioware.

[2] Catto, E. 2007. Box2d.

[3] Dias, J. and Paiva, A. 2005. Feeling and reasoning: A
computational model for emotional characters. Progress in
artificial intelligence. (2005), 127–140.

[4] Eladhari, M.P.E. Al et al. 2011. AI-Based Game Design  :
Enabling New Playable Experiences. Technical Report,
UCSC-SOE-11. 27, (2011), 1–13.

[5] Evans, R. and Short, E. 2014. Versu—A Simulationist
Storytelling System. Transactions on Computational
Intelligence and AI in Games. (2014), 113–130.

[6] Garbe, J. et al. 2014. Author Assistance Visualizations for
Ice-Bound , A Combinatorial Narrative. Foundations of
Digital Games 2014 (2014).

[7] Goffman, E. 1959. The Presentation of Self in Everyday Life.
Anchor.

[8] Havok Inc 2011. Havok Physics. Havok Inc.

[9] Here’s a chart of every choice in The Walking Dead: Season
1: 2013. http://venturebeat.com/2013/03/31/the-walking-
dead-season-one-plot-graph/. Accessed: 2015-02-08.

[10] Impressions: Prom Week: 2012.
http://www.rockpapershotgun.com/2012/02/16/impressions-
prom-week/. Accessed: 2012-02-02.

[11] Marsella, S.C. et al. 2004. PsychSim: Agent-based modeling
of social interactions and influence. Proceedings of the
international conference on cognitive modeling (2004), 243–
248.

[12] McCoy, J. et al. 2010. Comme il Faut 2  : A fully realized
model for socially-oriented gameplay. Proceedings of
Foundations of Digital Games (FDG 2010) Intelligent
Narrative Technologies III Workshop (INT3) (Monterey,
California, 2010).

[13] McCoy, J. et al. 2012. Prom Week. Center for Games and
Playable Media.

[14] McCoy, J. et al. 2013. Prom Week  : Designing past the game
/ story dilemma. Proceedings of Foundations of Digital
Games (FDG 2013) (2013).

[15] Naughty Dog 2011. Uncharted: Drake’s Fortune, Uncharted
2: Among Thieves, Uncharted 3: Drakes' Deception. Sony
Computer Entertainment.

[16] Prom Week: 2012. http://alastairstephens.com/prom-night/.
Accessed: 2012-02-17.

[17] Reed, A. et al. 2014. Ice-Bound: Combining Richly-Realized
Story With Expressive Gameplay. Foundations of Digital
Games 2014 (2014).

[18] Shapiro, D. et al. 2013. Creating Playable Social Experiences
through Whole-body Interaction with Virtual Characters.
Proceedings of the Ninth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE-
13) (Boston, Massachusetts, 2013).

[19] Shapiro, Daniel Tanenbaum, K. et al. 2015. Composing
Social Interactions via Social Games. Proceedings of the
14th International Conference on Autonomous Agents and
Multiagent Systems (Istanbul, Turkey, 2015).

[20] Square Enix 2010. Final Fantasy VII - XIII. Square Enix.

[21] Sullivan, A. et al. 2012. The Design of Mismanor: creating a
playable quest-based story game. Proceedings of the
International Conference on the Foundations of Digital
Games (Raleigh, NC, 2012).

[22] “The Sims Studio” 2009. The Sims 3. Electronic Arts.

[23] Twine: 2009. twinery.org. Accessed: 2015-04-24.

[24] Undead Labs 2013. State of Decay. Microsoft Studios.

[25] Unity Technologies 2005. Unity3d.

[26] Vanaman, S. et al. 2012. The Walking Dead. Telltale Games.

[27] Yannakakis, G. et al. 2010. Siren: Towards adaptive serious
games for teaching conflict resolution. Proceedings of
ECGBL. (2010), 412–417.

