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Abstract

Play trace dissimilarity metrics compare two plays of
a game and describe how different they are from each
other. But how can we evaluate these metrics? Are
some more accurate than others for a particular game,
or in general? If so, why? Is the appropriate metric
for a given game determined by certain characteristics
of the game’s design? This work provides an experi-
mental methodology for validating play trace dissimi-
larity metrics for conformance to game designers’ per-
ception of play trace difference. We apply this method
to a game-independent metric called Gamalyzer and
compare it against three baselines which are represen-
tative of commonly used techniques in game analyt-
ics. We find that Gamalyzer—with an appropriate input
encoding—is more accurate than the baseline metrics
for the specific game under consideration, but simpler
metrics based on event counting perform nearly as well
for this game.

Introduction
It is difficult for a game designer to predict what will hap-
pen when their game is in players’ hands. During the early
phases of design, it is feasible for a designer to directly ob-
serve players and make changes accordingly; but as the num-
ber of players increases, this ad hoc analysis cannot scale.

Accordingly, the academy and the games industry (moti-
vated by design concerns as well as business requirements
such as profitability and user retention) have invested sub-
stantial effort in gathering and analyzing game play data (el
Nasr, Drachen, and Canossa 2013). A natural artifact to ex-
amine is the play trace, a sequence of player actions corre-
sponding to one play of the game.

Many design questions for popular genres such as first-
person shooters concern the game’s spaces (and are thus
amenable to spatial heatmaps) (Kim et al. 2008). Unfortu-
nately, there are many genres (e.g. puzzle games) where spa-
tial superposition of game states is unhelpful, and there are
many design questions which are difficult to answer just by
looking at color densities. To avoid committing to particular
features of a given game’s states, we propose that the dif-
ference between play traces is an effective general-purpose

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

measurement which can be used to help answer a variety of
design and player-modeling questions.

• “Do players pursue diverse strategies?”

• “Are winning traces similar to each other?”

• “What are the outlier plays of this game?”

• “Is it possible to win without being at all similar to this
canonical trace?”

There are many metrics for computing play trace similar-
ity, both game-specific and game-independent. For example,
n-gram counts of actions could be compared or the termi-
nal states of those traces could be compared. These com-
parisons abstract over play traces: the former considers un-
ordered sets of counts and the latter merges the whole se-
quence into a single state. One recently developed metric,
Gamalyzer (Osborn and Mateas 2014), applies a variant of
edit distance to compare play traces directly, without ab-
stracting over time. While we can imagine several similar-
ity metrics, we should use the most correct one: that which
agrees the best with the designer’s own perception of differ-
ences between play traces.

In this paper we work directly with the designers of Prom
Week (McCoy et al. 2013) to validate Gamalyzer’s ability to
answer questions of interest. To this end we develop instru-
ments to validate the claim that any given play trace dissim-
ilarity metric is capturing the same kinds of differences as
a human designer. We can imagine that the better a metric
agrees with human appraisals of difference, the more useful
it will be in answering questions like the ones above.

A valid underlying distance metric is necessary but not
sufficient to validate an operational definition of something
like strategic diversity, overall uniqueness, or outlier detec-
tion. On the other hand, if we happen to have a sound opera-
tional definition that uses one distance metric, we can gauge
the quality of some other metric by swapping it in and seeing
if the accuracy of this definition improves or degrades.

This paper has two primary hypotheses. We first hypoth-
esize that because Gamalyzer (and operational definitions
based on it) considers whole play traces it will be more accu-
rate than general-purpose measurements like n-gram count-
ing that lose the temporal context of events. Our second hy-
pothesis is that Gamalyzer will dominate approaches based
on comparing ad hoc features of game states or play traces,



because these tend to ignore symmetries in a game’s design
(alternative paths which reach the same destination) and be-
cause it is difficult to select the correct state features even
with expert knowledge. Finding support for these two hy-
potheses with respect to a given game would imply that
Gamalyzer is a valid play trace dissimilarity metric for that
game. This would provide some evidence for the informal
claims of generality in the original Gamalyzer paper (Os-
born and Mateas 2014).

Related Work
Comparing Play Traces
Representative examples of play trace visualization and
analysis include histograms of game event counts and
BioWare’s overlaying of player actions (including meta-
game actions like asking other players for help) onto a
game’s map (el Nasr, Drachen, and Canossa 2013). These
visualizations, software, and analyses are generally invented
as needed to help answer a particular design question for a
particular game.

Playtracer (Andersen et al. 2010) is one example of a
design support tool which directly compares play traces
(specifically, sequences of game states). It is a visualiza-
tion that neither maps state onto a game’s navigational space
nor is genre-, game-, or query-specific. Unfortunately, Play-
tracer does not include a general-purpose game state dissim-
ilarity metric, and incorporating Playtracer into a design pro-
cess requires that designers both identify relevant state fea-
tures and define a state distance metric using those features;
these problems can be difficult even for experts.

It is important to note that we are not evaluating the us-
ability of visualizations or user interfaces in this paper; only
that the conclusions drawn by these automated processes are
correct with respect to the designers’ expert knowlege. This
is in some sense both easier and harder than developing a
usable interface, but it is often taken for granted.

Evaluating Distance Metrics
How should a distance metric be evaluated? Some distance
metrics are completely hermetic: string edit distance, for ex-
ample, is exactly the least expensive set of changes to turn
one string into another. This purely syntactic measure would
be unaware of the similarity between “green” and “viridian.”

Often (and in the particular case of play traces) we want
to measure the difference between two objects of interest in
terms of some semantic qualities (such as player experience
or strategy). Other domains have this property as well: while
there are many ways for computers to compare two images
for similarity, if we want to present the results to humans we
should pick a metric that agrees well with human perception.

A particularly thorough investigation of image compari-
son metrics comes from Rogowitz, Frese, Smith, Bouman,
and Kalin (1998). In this study, two psychophysical exper-
iments were performed: one in which humans arranged 97
images on a table such that the distance between two images
stood for the dissimilarity of those two images; and one in
which humans repeatedly selected which of a subset of the

97 images was most similar to a reference image from the re-
mainder of the images. Both of these experiments produced
similarity matrices (the first complete and the second sparse)
which were reduced to a low-dimensional space in pursuit of
the most important perceptual features of images.

In designing our experiments, we supposed that one fea-
ture that play trace comparison has in common with image
comparison is that most distances, on a 0 to 1 scale, are
likely to be close to 1: so different as to be effectively in-
comparable. The sparse distance matrix in the image per-
ception experiments matched the complete distance matrix
quite closely—despite the extremely different experimental
setup—because most of the entries in the matrix are 1.

In our case, we are not trying to derive the features that
humans use to discern play trace differences; instead, we are
trying to validate that the distances found by various metrics
conform to the distances found by humans. The experiments
conducted by Russel and Sinha comparing the L1 and L2
distances for image dissimilarity (2011) are a closer match
for the aims of this work. Here, the authors also controlled
for semantic content so that human ratings purely concerned
the visual properties (rather than the subjects) of the image.
Semantic content is the whole point of play trace analysis,
so our experimental design borrows from both studies.

We would like to note that there are other meaningful
kinds of play trace differences besides the designer percep-
tion of player strategy, including for example differences in
play style. Evaluating metrics’ suitability for those purposes
is outside the scope of this paper, but the techniques we show
here should be broadly applicable.

About Prom Week
Gameplay in Prom Week revolves around the social lives of
18 characters at a high school in the week before their senior
dance. Each scenario (or story) in Prom Week centers around
the social goals of one character. For example, the goals of
Chloe’s story (an introductory level) are to help her make
peace with a notorious bully and to start dating the boy she
has always loved from afar.

The player works toward goals by selecting characters to
engage in social exchanges—patterns of social behavior that
change the social state. Each exchange is categorized in one
of several social intents, which are high-level social goals.
The social exchanges available (and the likelihood of their
success) are determined by the volitions of the characters.
In our Chloe example, players might want her to engage in
the social exchange “Ask Out” with her crush and “Make
Peace” with her bully. A recent journal article gives an in-
depth description of social exchanges and the AI system that
drives Prom Week (McCoy et al. 2014).

Each Prom Week play trace file contains a list of all so-
cial exchanges played in that particular trace; from this,
the social state at any given timestep can be reconstructed.
Since its initial release on February 14, 2012, over a hun-
dred thousand play trace files have been generated, making
Prom Week a good candidate for developing novel forms of
evaluation (Samuel et al. 2014). Links to play the game for
free can be found at promweekgame.com.



About Gamalyzer
Gamalyzer is a variant of the constraint continuous edit
distance applied to game play traces (Osborn and Mateas
2014). Briefly, it finds the cheapest way to turn one play
trace into another using only matches, insertions, and dele-
tions. The cost of matching a single game event (or input) to
a different game event is defined by a recursion on the name
and parameters of that event. This syntactic difference is in-
terpreted as a semantic difference, because the encoding of
play traces as sequences of parameterized game actions de-
pends critically on design knowledge to determine the types
and names of events, their parameters, et cetera.

Gamalyzer assumes that play is goal-directed, that sub-
stantial differences in length indicate substantial semantic
differences, that inputs arrive at roughly the same rate in
every trace, and that events which are far apart in time are
incomparable. This last assumption is the constraint in con-
straint continuous edit distance: a parameter called the warp
window (ω) prevents match operations for pairs of inputs of
each trace which are too far apart.

So far, Gamalyzer’s outputs have been rationalized on an
ad hoc basis, and it seems to produce valid output from syn-
thetic data. This paper lays out the first tests of its accu-
racy as a distance metric with respect to a designer’s con-
ception of play trace difference using actual data. Moreover,
Prom Week is distinct enough from the platformers and puz-
zle games used in Gamalyzer’s debut that the metric’s per-
formance herein should provide evidence for the claim that
Gamalyzer is game-independent.

Gamalyzer encodings of game inputs consist of two main
parts: a determinant and a value. If two inputs have differ-
ent determinants, they are incomparable (their change cost
is infinity); if their determinants match, then their values
are compared recursively, with some parts of the value con-
tributing more significantly to change cost than others. The
determinants and value are sometimes called the parameters
of an event, one of which (generally the first parameter of
the determinant) is the event type or name.

For this paper, we evaluate Gamalyzer with two encodings
of Prom Week play traces. Each move in Prom Week has
the player select an initiating character, a social exchange,
and a target character. In the first encoding (glzie>t), ev-
ery input has the same determinant (move); the social ex-
change’s initiating character (i) has the same relevance as
the combination of social exchange (e) and social intent (a
social exchange category); and both of those have greater
relevance than the target character (t). The second encoding
(glzintent) puts the intent into the determinant and treats the
initiator, social exchange, and target as equally important.

These encodings carry different design knowledge. In the
former, it is assumed that every input is roughly compara-
ble; in the latter, pursuing different social goals—improving
friendship, beginning to date, becoming enemies—is treated
as making fundamentally different maneuvers. If one encod-
ing performs better than the other in creating play trace dis-
similiarity comparisons that match the Prom Week design-
ers’ perception of dissimilarity, that tells us something about
Prom Week: either social intent is one component of strat-
egy among many, or else it is the primary indicator of player

intention.
For a concrete example of each encoding, consider a

turn in which the player wants Chloe to flirt with Doug.
Here, the initiator is Chloe, the target character is Doug,
the social intent is to increase Doug’s romantic affection
for Chloe, and the specific social exchange is flirting. In the
glzie>tencoding, the input’s determinant is simply move
and the value contains Chloe, Flirt, and Doug, with
Doug in a less-important position; in the glzintentcoding,
the determinant is romanceUp and the value contains
Chloe, Flirt, and Doug in equal prominence.

Other Metrics
We want to evaluate Gamalyzer, but in order to do so we
need a sound baseline. For this work, we compare Gama-
lyzer against three different baseline dissimilarity metrics.
Each of these measures is grounded in previous analyses of
Prom Week play data.

The first baseline is derived from a commonly used fea-
ture in play trace analysis: n-gram counting of social ex-
change action names (McCoy and Mateas 2012). Each play
trace can be represented (lossily) as a vector of n-gram
counts. We take the Manhattan distance (L1 norm) between
those vectors and normalize it by the total number of n-
grams appearing in both traces to obtain a number between
0 and 1. As in earlier work, the initiator and target charac-
ters were ignored in these n-gram counts, so this measure
abstracts the play traces of interest.

The second baseline is inspired by unpublished work in
clustering Prom Week play traces. Here, each play trace is
represented as a vector of counts of interactions: an intent,
an initiating character, and a target character. Many social
exchanges can map onto the same intent, so this is also an
abstraction of the original play trace. We take the normalized
Manhattan distance between these vectors to yield a number
between 0 and 1.

The first three metrics we have discussed—Gamalyzer,
n-gram counting, and interaction counting—work on se-
quences of actions, although the latter two abstract that se-
quence into counts. Our final baseline is instead based on
game states: the distance between two traces is defined as
the distance between their terminal states. This state-based
metric uses angular dissimilarity, where the feature vectors
are comprised of the strengths of the three relationships (re-
spect, platonic affection, and romance) between every pair
of characters.

Gamalyzer and event counting are relatively game-
independent, whereas the state distance metric is relatively
game-specific (it happens to be easy to define for Prom
Week). We might expect the more game-specific metric to
perform better than interaction counting, which we would
expect to beat n-gram counting because interaction counts
include information about initiator and target characters.

From Gamalyzer’s definition and underlying assump-
tions, if Gamalyzer does not beat the counting-based metrics
and our first hypothesis is unsupported, then Prom Week’s
designers must perceive that making the same moves in a
different order implies a similar strategy. If our experiments



do not support our second hypothesis—that is, if Gamalyzer
does not beat the state-based metric—, Prom Week’s design-
ers must perceive that distinct sequences of moves indicate
similar strategies (i.e. that the game has many symmetries).

In interviews conducted before the experiment, Prom
Week’s designers supposed that their game would not have
a large number of symmetries. If our predictions about these
metrics are correct, and if Gamalyzer does not outperform
these baselines, that result could be viewed as evidence
against the designers’ belief in the game’s lack of symme-
tries. This illustrates the importance of validating metrics
experimentally, and of building well-founded theories from
those observations. While this work on its own is insuffi-
cient to conclusively prove or disprove the hypotheses in the
introduction, its contributions in connecting play trace met-
rics to characteristics of game dynamics should be of special
interest to scholars of game design.

Applying Dissimilarity Metrics
Distance measures do have an immediate utility for search-
ing and filtering play traces, but they can also be applied
to other purposes. In this paper, we consider one general-
purpose application—finding outlier play traces—and an-
other which is of special interest to Prom Week’s de-
signers (McCoy and Mateas 2012): describing the overall
uniqueness of a set of play traces.

We also consider presenting a sorted list of outliers to
a designer; this could highlight players who are misunder-
standing a system, or who are playing to sabotage or circum-
vent it. We could also easily compare these ratings against
human judgments to evaluate distance metrics. To determine
the degree to which each play trace is an outlier, we need an
operational definition of “outlier-ness” in terms of distances
between play traces.

We derived a measurement using k-medoids, a classical
partitioning technique. The medoid of a set of traces is the
trace with minimum average distance to all the other traces
in the set; to generalize to k > 1, we pick k elements
(medoids) of the set so as to minimize the sum of the dis-
tances of each trace in the set to its nearest medoid. Infor-
mally, a medoid is like a centroid, except that it is not a
mean, but a median (one of the elements in the original set).
To calculate the degree to which a trace is an outlier with
respect to a set of traces that contains it, we take its distance
from the nearest medoid.

We can use this approach to judge the overall uniqueness
of traces in a set: to a first approximation, we can imagine
that the average outlier rating of the traces in the set is a
proxy for the set’s overall uniqueness. For sets where many
traces are strong outliers, the uniqueness will be high, and
for sets with few strong outliers, the uniqueness will be low.

Experiment design
In our experiment design we take the dissimilarity of
playtrace metrics as rated by one of Prom Week’s de-
signers as the ground truth against which we compare the
metrics. The closer a metric gets to achieving the same
dissimilarity ratings as the human designer, the better the

metric is. The metrics used are the two different Gamalyzer
encodings described in About Gamalyzer and the three
non-Gamalyzer encodings outlined in Other Metrics.
Several of our distance metrics involved parameters which
had to be tuned (Gamalyzer’s warp window ω; k=1 or
2 medoids; and n for the n-gram metric). In each case,
we used an automated search process to select parameter
values that minimized root-mean-square error so that each
metric (including the baselines) would be represented as
well as possible. Our complete experimental setup includ-
ing play traces, ratings, and analysis code are available at
https://github.com/JoeOsborn/metric-eval.

Our experiments samples were drawn from the 3,186
complete play traces of Doug’s story. To reach this point
players must have built up a basic proficiency of manipulat-
ing the social space. Additionally, though Doug’s scenario
has multiple solutions to its social puzzles, its short length
makes the designer’s task of providing dissimilarity ratings
tenable. Future work must examine whether some metrics
are more or less appropriate in other levels of Prom Week.
Individual traces consisting of a sequence of moves insti-
gated by the player (an interactor, a social exchange, and a
target character) were presented to raters as prose generated
by a simple templating system which presented the charac-
ters involved and the intent of the social exchange.

Each of the ratings questions includes the language “with
respect to player strategy.” This is because play traces
could be dissimilar in a variety of ways—with respect to
player strategy, player experience, winning or losing, goals
achieved, et cetera. We tried to frame the questions so that
the raters would consider only the lens of player strategy
(which seems the likeliest sort of similarity to derive using
only player actions). By using three sets of rankings in three
experiments, we demonstrate the accuracy of the metrics un-
der test in answering a range of common game-design ques-
tions, giving a better sense of their overall utility.

The main concern in all three experiments is the low num-
ber of ratings relative to the population of traces. This is
somewhat unavoidable, since most games have a small num-
ber of designers and a large number of play traces; it would
be extremely difficult for so few people to annotate so many
traces. Another issue compounded by the small number of
raters is that a single rater might use different heuristics and
internal criteria during different trials. If we had more raters,
we could control for this; as it is, we have to assume that the
designers have a good sense of play trace difference. Possi-
ble controls even when the number of raters is small include
“warming up” each rater with several trials whose ratings
will be discarded, or randomizing the order of the trials for
each experience.

Though having additional raters might have mitigated the
above dangers, we claim that using few raters is in and of
itself not a threat to validity, but rather to generality: in other
words, this work suffices to show validity for Prom Week,
but not for other games. Comparing these metrics against
ratings from more individuals would likely change the cal-
culated errors, but those revised errors would be measuring a
fundamentally different thing: a group of designers’ percep-
tion of dissimilarity as opposed to that of a single designer.



Any noise or inconsistency in an individual designer’s rat-
ings are in fact part of the phenomenon we are trying to cap-
ture, since we hope to automatically approximate a game
designer’s perception of their own game’s dynamics. Fur-
thermore, considering that many games only have a single
designer, the low number of raters is not in and of itself
a threat to validity. We do feel that repeating these experi-
ments with more designers of different games would show
how the results of this paper generalize.

Finally, we must note that with only one rater working in
a seven-point scale, we can’t hope for any metric to have an
error much less than 1

7 = 0.143. Greater precision than that
on any individual trial would be difficult to justify.

Experiment 1: Trace Dissimilarity
The fundamental question when evaluating a play trace dis-
similarity metric is whether the metric is accurate. The natu-
ral experiment, then, is to compare the distances provided by
some candidate metric against human-provided distances.
For this experiment, we conducted 25 trials of the following
scenario: we randomly selected a sample of six traces from
the population, the first of which was designated as a refer-
ence; then, a distance was determined from the reference to
each of the other five traces. Raters evaluated each trace’s
distance from the reference on a 7-point Likert scale (“On
a scale of 1 to 7, with 1 meaning ‘exactly the same’ and 7
meaning ‘incomparably different’, how different is this trace
from the reference trace with respect to player strategy?”).
The ratings were normalized to a closed unit interval and
compared against each of the distance metrics.

Experiment 2: Outlier Rating
For our second experiment, we wanted to determine whether
the Gamalyzer metric was the best choice of distance met-
ric for outlier rating. We therefore needed designer ratings
which described how much the designer perceived a given
trace to be an outlier among a given set of traces. We con-
ducted 25 trials in which 10 traces were randomly selected
from the population. In this case, there was no reference
trace; each trace was to be rated in terms of its “fit” with
the rest of the sample. Raters determined this fit for each
trace on a 7-point Likert scale (“On a scale of 1 to 7, with
1 meaning ‘completely typical’ and 7 meaning ‘completely
atypical’, to what extent is this trace typical of this set with
respect to player strategy?”). We normalized these ratings to
a closed unit interval and compared them against the out-
lier rating measurement described above, using each of the
underlying distance metrics.

Experiment 3: Overall Uniqueness
Finally, we hoped to learn more about a core question un-
derlying the evaluation of Prom Week as an interactive so-
cial AI system: Do players have unique experiences with the
game? While our “player strategy” framing alters the tenor
of this question somewhat, we can suppose that a player’s
choices are determined in large part by the player’s experi-
ence of the game, and that their experience is also influenced
by their choices. For this experiment, we conducted 25 trials

Dissimilarity Outliers Uniqueness
glzintent 0.208 0.279 0.189
Interactions 0.219 0.292 0.173
1-grams 0.236 0.304 0.242
glzie>t 0.287 0.326 0.290
States 0.592 0.557 0.576

Table 1: Root-mean-square error results for all metrics.

in which 10 traces were randomly selected from the popula-
tion. This experiment also used no reference trace. We asked
raters to describe the whole set of 10 traces in terms of its
incoherence—how unique or “spread out” the plays in this
set were (“On a scale of 1 to 7, with 1 meaning ‘completely
uniform’ and 7 meaning ‘not at all similar’, how similar are
the traces in this set with respect to player strategy?”). These
ratings were normalized to a closed unit interval and com-
pared against the uniqueness rating measurement described
above, using each of the underlying distance metrics.

Results and Discussion
Table 1 shows the root-mean-square error obtained between
each of the five dissimilarity metrics and the game designer’s
ratings—ground truth—for each of the three experiments.
The results seem to strongly support our second hypothe-
sis: both encodings of Gamalyzer fared substantially better
than the state based metric. The evidence for our first hy-
pothesis is not quite as clear, since one Gamalyzer encoding
was superior to the three baseline metrics while the other
Gamalyzer encoding performed worse. Though clearly sen-
sitive to the format of the input encoding, the fact that Gama-
lyzer can outperform other metrics is promising for its more
widespread use as a game independent dissimilarity metric.
But why did these metrics rank in this order? Answering this
question could lead to improvements in Gamalyzer as well
as new insights about Prom Week.

The trace dissimilarity experiment gives a foundational
measure of suitability for a play trace distance metric.
glzintent(with ω=20, the highest value possible for these
experiments) narrowly edges out the interaction count met-
ric and n-gram counting (n=1), but all three have error within
two scale points of the human ratings. glzie>t(ω=7) fares
slightly worse, while state distance performs badly.

The poor performance of state similarity might be because
states describe outcomes and not strategies; the mean error
of the state similarity metric is near -0.5, grossly underes-
timating dissimilarities (mean error is within ±0.1 for all
other metrics). This behavior is consistent with two obser-
vations: many distinct sequences of actions might lead to
similar states; and many similar sequences of actions might
lead to different states (due to the hidden information and
highly emergent dynamics of the game rules).

We believe that interaction counting beats n-gram count-
ing by considering both the initiator and target of actions,
and glzintentimproves over the interaction counting metric
by accepting fuzzier matches and considering temporal or-
dering more strongly. But how do the event counting metrics
get so close even though they consider much less informa-



tion? There must be temporal symmetries in the designers’
perception of play trace differences. This came as a surprise
to the designer who gave us the ratings, although it is un-
clear whether these symmetries are actually embedded in the
game’s dynamics or merely emerge from the designer’s rat-
ings. In the future, comparing perceived trace dissimilarities
versus actual state dissimilarities could be used to help vali-
date a game design.

N-gram counting performs only a little bit worse than in-
teraction counting; why? It seems that within a given level
(or at least within the scenario observed), the social ex-
change or social intent almost completely determines on its
own the two agents involved. This is not to say that play-
ers do not have options; but once they have selected a social
exchange, there is generally a small number of reasonable
choices for the initiator and the target. This was a concern to
one of the game’s designers: was it possible that the open-
ing narration of that scenario guided players too strongly? In
other games or in other Prom Week levels (perhaps in a level
with a variety of potential romantic interests), this determi-
nation might not hold. If the difference in error between n-
gram counting and interaction counting did not increase in
such levels, that would support the claim that Prom Week
moves are largely determined by social exchange selection.

The substantial difference in performance between the
two Gamalyzer encodings (and the good performance of the
two counting metrics) shows that, although Gamalyzer is
game-independent, the best choice of encoding varies from
game to game. Gamalyzer encodings seem to perform bet-
ter when the determinant (the type of the event) discrim-
inates strongly in the same ways a designer would dis-
criminate; otherwise, unrelated events will be perceived as
more similar than they ought to be. In Prom Week, it ap-
pears that the strategic part of the move is the intent—that
is, a begin dating move is so strongly different from a be-
come better friends move that they cannot be compared di-
rectly. There is also a sizable difference in optimal warp win-
dow between the two encodings. The large warp window in
glzintentreflects the low temporal coherence required for
designers to perceive similarity, while the smaller warp win-
dow in glzie>tis necessary to avoid underestimating dis-
similarity; the interaction between game design, encoding,
and warp window width is worth exploring in more detail.

Error rates for outlier rating and uniqueness appraisal are
mostly in line with the trace dissimilarity experiment (k = 1
medoid was chosen as it minimized error for all metrics).
Strangely, although uniqueness is built on top of the defini-
tion of outlier rating, a uniqueness measure based on inter-
action counting beats one based on glzintent—even though
glzintentoutperforms interaction counting on the outlier rat-
ing task. Still, the difference in performance is much less
than a single rating scale point.

Immediate future work includes reproducing these exper-
iments on different Prom Week levels to test the degree to
which intent determines initiator and target characters. Fu-
ture experiments should use more ratings (perhaps increas-
ing the size of each individual trial) to improve precision; it’s
also important to repeat these experiments in different games
to test the claim that Gamalyzer is game-independent.

Conclusions

The main contribution of this work is a methodology for
evaluating play trace dissimilarity metrics, grounded in well-
established techniques for evaluating other types of simi-
larity measurements. In this experiment, two encodings of
Gamalyzer were compared against three standard dissimilar-
ity metrics; one state-centric measure and two action-centric
measures. Both encodings performed better than the state-
based metric, while only one encoding performed better
than the counting-based metrics. We believe that this tech-
nique is widely applicable to other games and other metrics.
Other operational definitions of play trace characteristics—
questions that a good metric should help answer—could also
be included in this instrument as appropriate to the game un-
der consideration.

This work also builds evidence for Gamalyzer’s claim
of game-independent dissimilarity measurement, but future
work must repeat these experiments on other games and
against other baselines. Gamalyzer does seem to yield rel-
atively accurate play trace dissimilarities, and it can be used
effectively in derived measures. That said, it remains highly
sensitive to the choice of input encoding, and our findings
in this paper do imply that certain encodings lend them-
selves better to certain games. We also suspect that other de-
sign perspectives besides “player strategy” would be better
served with specialized encodings. The space of reasonable
encodings is relatively small for a given game, so it is fea-
sible to find the best encoding through experimentation; but
it would still be helpful to know more about the interaction
between the game design and choice of encoding.

In order to be appropriate for broader use, Gamalyzer’s
documentation must provide clearer guidelines on what
makes an effective encoding; moreover, tools should be de-
veloped that can guess at an encoding’s quality based on
properties like the number of parameters in each event, the
number of distinct determinant types, and so on. As Gama-
lyzer matures and is used (and validated) in more games, the
characteristics of good and bad Gamalyzer encodings will
become more apparent, allowing us to provide more guid-
ance about playtrace encodings to future Gamalyzer users.

If we can strongly validate a game-independent play trace
dissimilarity metric against the intuition of professional
game designers, new categories of general game design sup-
port tools will be possible. This will involve answering ques-
tions such as “Which metrics (or families of metrics) are
most effective for which games?” The idea that some met-
rics are better or worse for certain games is also fascinating:
if this is due to hidden properties of a given game’s design
or dynamics, we might be able to use the appropriateness of
a metric as a proxy for those hard-to-measure properties and
evolve our understanding of the science of game design.
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and Popović, Z. 2010. Gameplay analysis through state pro-
jection. In Proceedings of the Fifth International Conference
on the Foundations of Digital Games, 1–8. New York, NY,
USA: ACM.
el Nasr, M. S.; Drachen, A.; and Canossa, A. 2013. Game
Analytics. Maximizing the Value of Player Data. Springer.
Kim, J. H.; Gunn, D. V.; Schuh, E.; Phillips, B.; Pagulayan,
R. J.; and Wixon, D. 2008. Tracking real-time user expe-
rience (true): a comprehensive instrumentation solution for
complex systems. In Proceedings of the SIGCHI conference
on Human Factors in Computing Systems, 443–452. ACM.
McCoy, J. A., and Mateas, M. 2012. All the world’s a stage:
a playable model of social interaction inspired by dramatur-
gical analysis. Ph.D. Dissertation, University of California
at Santa Cruz.
McCoy, J.; Treanor, M.; Samuel, B.; Reed, A. A.; Mateas,
M.; and Wardrip-Fruin, N. 2013. Prom week: Design-
ing past the game/story dilemma. In Proceedings of the
Eighth International Conference on the Foundations of Dig-
ital Games.
McCoy, J.; Treanor, M.; Samuel, B.; Reed, A.; Mateas, M.;
and Wardrip-Fruin, N. 2014. Social story worlds with
comme il faut. IEEE Transactions on Computational In-
telligence and AI in Games PP(99):1–1.
Osborn, J. C., and Mateas, M. 2014. A game-independent
play trace dissimilarity metric. In Proceedings of the Ninth
International Conference on the Foundations of Digital
Games.
Rogowitz, B. E.; Frese, T.; Smith, J. R.; Bouman, C. A.; and
Kalin, E. B. 1998. Perceptual image similarity experiments.
In Photonics West’98 Electronic Imaging, 576–590. Inter-
national Society for Optics and Photonics.
Russell, R., and Sinha, P. 2011. A perceptually based com-
parison of image similarity metrics. Perception 40(11).
Samuel, B.; McCoy, J. A.; Treanor, M.; Reed, A.; Wardrip-
Fruin, N.; and Mateas, M. 2014. Story sampling: A new
approach to evaluating and authoring interactive narrative.
In Proceedings of the Ninth International Conference on the
Foundations of Digital Games.


