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Abstract
We introduce Playspecs, an application of ω-regular ex-
pressions to specifying play traces (sequences of game
states or events unfolding over time). This connects the
automated analysis and model checking of games to
the literature on formal software verification via Büchi
automata. We show how to define desirable or undesir-
able sequences of game events with Playspecs and how
associated algorithms can find examples (or prove the
impossibility) of such sequences. Playspecs have two
main benefits over existing techniques for specifying the
behaviors of a game over time. First, they offer a scalable
commitment to formal modeling: the same Playspecs can
filter existing traces gathered by telemetry, search for sat-
isfying traces using existing game code, or drive formal
verification when paired with a logical model of a game.
Second, Playspecs’ syntax can be customized for the
game engine or game in question so designers may write
specifications using their game’s native vocabulary. We
define Playspecs’ syntax and semantics (modulo game-
specific customizations) and outline algorithms for each
of the applications mentioned above, providing exam-
ples from the social simulation game Prom Week and the
puzzle game engine PuzzleScript.

1 Introduction
Game design produces complex emergent behaviors. Unfor-
tunately, some of those behaviors may be undesirable, and
some desirable behaviors may be absent: the design may not
match the designer’s intent. Furthermore, game programs do
not always faithfully implement game designs. Techniques
from the formal software verification community could help
resolve both of these problems, but game designs are not
always explicitly specified; even when specifications are ex-
plicit, they tend to be informal.

Informal or missing specifications require frequent
playtesting and human interpretation to determine desirable
or undesirable behaviors. Formal game modeling approaches
like BIPED (Smith, Nelson, and Mateas 2009) automate
some of this design verification, but often require a compre-
hensive logical model of the game design to operate. This
can be challenging for game designers and programmers un-
familiar with formal logic. Even familiar tools like unit or
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functional tests have limited utility for checking the correct-
ness of game programs: gameplay situations are complex
to configure and correctness criteria often involve the evolu-
tion of game state over time. Automated testing of complex
game functionality seems relatively uncommon in the game
industry, as presentations at its flagship conference still ad-
vocate for it (Du Bois 2009; Provinciano 2015). Looking
only at the behavior of games (rather than their code), most
game play trace analysis uses aggregated metrics like event
counts to collapse sequences of game states into sets of num-
bers (El-Nasr, Drachen, and Canossa 2013). Some work has
also been done in searching for traces which contain cer-
tain events, in some cases only when prior to other events.
Trace visualization and gestalt approaches (Liu et al. 2011;
Osborn and Mateas 2014) are more prevalent than targeted
queries; this may be because writing targeted queries is diffi-
cult, often combining multiple database lookups with code in
a general-purpose programming language. We contrast our
work with other solutions to these problems in Sec. 6.

We propose Playspecs, a formalism that cleans up and
regularizes all of these trace analysis activities. We provide
one play trace specification language (tailored for efficiently
searching through play traces) that can be reused across dif-
ferent games. This language also scales up from trace filtering
through to rigorous formal verification, permitting the use of
the software engineering community’s verification tools.

The input to these Playspecs can be witnessed play traces
gathered from telemetry (or random play, or solution search)
or a logical model of a game. Playspecs can be adopted at
the level of the game engine or the individual game, and with
a little developer effort they can be relatively natural for de-
signers to author directly. Formally, Playspecs are ω-regular
expressions over program states (instead of characters in a
string); ω-regexes are a well-understood language for spec-
ifying the behavior of computational systems (Albin 2003).
In introducing Playspecs, we contribute: an application of
proven techniques from formal verification to game design;
a specification tool with a scalable degree of formality; and
an emphasis on the use of game- and game-engine-specific
concepts and syntax when specifying a game design.

We have applied a subset of the Playspec language to Puz-
zleScript (Lavelle 2013), a game engine for designing puzzle
games, to verify that level solutions are valid with respect to
a designer’s intent. Source code is available on GitHub in the



js/analyzer/ directory of https://github.com/
joeosborn/puzzlescript/tree/analyzer
(though this implements an earlier draft of Playspecs).
Given their promise in this relatively general application,
we have also begun applying Playspecs to the analysis of
play traces from the simulation game Prom Week (McCoy
et al. 2011). We provide a relatively complete, efficient,
and documented reference implementation at https:
//github.com/joeosborn/playspecs-js.

This paper proceeds as follows. First, we motivate the
use of Playspecs with PuzzleScript and Prom Week exam-
ples. We then formally define the syntax and semantics of
Playspecs for an audience that may be unfamiliar with exist-
ing work in program verification. Next, we outline how to
apply Playspecs to existing games and game engines. Finally,
we compare Playspecs with earlier approaches to the formal
specification and verification of game designs.

2 Motivating Examples
PuzzleScript has already received some attention from the
game AI community (Lim and Harrell 2014). It offers a
semi-declarative syntax for defining 2D puzzle games in
terms of 1-dimensional rewrite rules which each match a
slice of the current game level (a 2D grid of objects, where
multiple objects may reside at the same position) and mod-
ify that slice according to a fixed pattern. For example, to
detect a player object moving towards an adjacent box ob-
ject (in any direction), one writes [> Player | Box];
to cause the box to move under this circumstance, the com-
plete rule is [> Player | Box] -> [> Player |
> Box] (note the > arrow which is added to the box on the
right hand side). Levels are written out as 2D grids of ASCII
characters whose meanings are assigned by a legend. Each
level is won when the game’s win conditions, e.g. all Box
on Target, are met.

In puzzle games, it is important to gradually present the
game’s concepts to the player, building up to more complex
problems. If a player can complete a stage without learning
a necessary concept (for example due to an oversight in the
level design) they may be unprepared for future levels. The
designers of the math puzzle game Refraction invented means
to detect and prevent these kinds of design bugs (Smith,
Butler, and Popovic 2013), but applying their techniques to
new games requires working largely from scratch.

We have extended PuzzleScript with an automated solver
based on heuristic search and with support for Playspecs: any
PuzzleScript game can define Playspecs that must hold for
found solutions of each level. Solutions which violate those
specifications are presented to the designer. In this way, we
build confidence that levels have no shortcuts and require
the player to have learned certain concepts. We simplify
writing Playspecs by supporting a subset of PuzzleScript’s
native syntax in the specification language. A specification
can demand that a 1D pattern or 2D level fragment matches
the current game state or that a win-condition-like predicate
holds. These forms exactly mirror the PuzzleScript syntax.

Some solution checks expressible in Playspecs include
”the red, green, and blue switches must be flipped in that
order”; ”the player must remove a box which starts on a goal

Playspec ω-Regex Explanation
p p The fact p holds in the current state
P&Q P and Q both hold in current state
P|Q [pq] Either P or Q holds in current state
not P [ˆp] P does not hold in the current state
F,G FG Sequence F and then G
F;G F|G Either sequence F or G holds
FˆG Sequences F and G both hold
... .* Matches any number of states
F ... F* F matches zero or more states
F 1... F+ F matches one or more states
F M...N F{M,N} F matches between M and N states
.. .*? Reluctantly matches any number of

states; same variations as ...
F*** Fω F repeats forever

Figure 1: Playspec and analogous ω-regex syntax.

position, replacing it later”; and ”this level requires at least
20 moves, moving two particular boxes at least once each.”

Prom Week is a social simulation puzzle game (driven by
the AI system Comme il Faut (McCoy et al. 2014)) populated
by characters who have ever-shifting relationships and atti-
tudes towards each other. Players change the social state by
having characters engage in social exchanges with each other,
such as Ask Out or Backstab. Each level of Prom Week asks
the player to solve different social puzzles such as wooing
a date or giving a bully their just desserts within a limited
number of turns. The exchanges available on a given turn are
determined by over 5,000 influence rules which reason over
all aspects of the social state, including relationships (friends,
dating, enemies), network values (buddy, romance, cool), and
other factors. This rich dynamism comes at the cost of pre-
dictability: though adding additional rules is important for
making characters believable, it is difficult for the designers
to anticipate how any given rule affects the rest of the system.

There are three main applications of Playspecs to Prom
Week: finding traces with interesting or surprising be-
havior or strategies; verifying that level-specific goals
can still be met when influence rules are changed or
added; and identifying traces as unbelievable if charac-
ters perform unrealistic actions like repeatedly breaking up
and starting to date again on successive turns. Playspecs
can reason over the same social facts as the influence
rules do with a custom syntax resembling labeled edges.
For example, Doug-friends-Jordan checks whether
Doug and Jordan have the friends relationship, and
Doug-romance<0.3-Chloe succeeds if the value of
Doug’s romance network for Chloe is less than 0.3.

3 Playspecs
In this paper, we use the term play trace to mean a sequence
of data generated by activity in a game. The simplest pos-
sible play trace might be a log of the inputs provided by
the user. Richer traces carry more data: more abstract in-
puts and events, more elements of the game state, and so on.
These traces might be physical files stored on disk or may
be generated on the fly by a verification tool. In the case
of PuzzleScript, a trace is a sequence of player movements



Puzzlescript Examples

[ROff] & [GOff] & [BOff] 1..., [ROn], [GOff] & [BOff] 1..., [GOn], [BOff] 1..., [BOn], ...

The red, green, and blue switches must be flipped in that order. Switch objects are named by a color (R/G/B) and status (On/Off) pair.

..., ’=@’, ..., ’=*.=’, ..., ’=*.=’, ..., ’=P.=’, ..., win & end
=O.. =OP* =@.*
=..*

The player must move a box which starts on a goal position, replacing it after moving a second box. In these 2D patterns, @ means both a
box (*) and a target (O) are present; = indicates a wall and P the player. In this level, these patterns identify unambiguous locations.

20... ˆ ..., 5@5 [no Box], ... ˆ ..., 7@3 [no Box], ...
This level requires at least 20 moves, moving two particular boxes at least once each. X@Y forces patterns to match at a specific location.

Prom Week Examples

Doug-romance<0.3-Chloe ... ˆ not Doug-dating-Chloe 1..., Doug-dating-Chloe
With a romance network value of less than 0.3 the entire time, Doug must go from not dating to dating Chloe.

Doug-dating-Chloe, ..., not Doug-dating-Chloe, ..., Doug-dating-Jordan &
Doug-friends-Chloe
Doug begins by dating Chloe, but they eventually break up. Doug begins dating Jordan and befriends his old flame.

Doug-friends-Chloe, ..., Doug-dating-Chloe ; Doug-dating-Chloe, ..., Doug-friends-Chloe
Doug befriends Chloe and then starts dating her, or else Doug starts dating Chloe before they become friends.

Figure 2: Example PuzzleScript and Prom Week Playspecs

and level states found during a search for puzzle solutions.
In Prom Week, traces contain individual social games and
their outcomes; they come from either observed game play
(gathered by telemetry) or from exhaustive enumeration of
games up to a fixed number of turns. Playspecs assume that
game traces are sequences of sets of facts.

A Playspec matches a trace in the same way that a regular
expression matches a string. One regex might match several
distinct positions in the string or use start and end anchors to
only match complete strings; analogously, a Playspec may
match a portion of a play trace or an entire trace. Just as a
regex describes a set of possible strings (a language), each
Playspec describes a set of possible traces.

A regex checks whether each character in the string is
a member of a particular set of characters, but Playspecs
support a variety of complex (often game- or game-engine-
specific) queries on individual states. Boolean combinations
of these game-specific basic facts make up the state language
fragment of Playspecs, and the game-independent syntax for
describing the evolution of states over time is the trace (or
regular) language fragment (Fig. 1 describes both fragments
in a side by side comparison of Playspec and ω-regex syntax).

There are four basic facts which are the same across all
games: true, false, start, and end. The first two are
self-explanatory; the third and fourth indicate the beginning
and end of the play trace respectively (roughly analogous to
regex ˆ and $ anchors). Note that while the propositional
formulae of the state language can be negated, the temporal
sequences of the trace language may not be; the lookaround
extension we propose later could be put to this purpose.

All other basic facts are game- or genre-specific: Sec. 2
discussed how Prom Week’s basic facts query the social
state, while Puzzlescript’s basic facts concern the current
configuration of the puzzle. Some facts could be provided
by general-purpose game engines; there is also a con-
nection to the authorial affordances of operational log-
ics and domain models (Mateas and Wardrip-Fruin 2009;
Osborn et al. 2015), which are portable across game genres.

When considering a sequence of states in Playspecs, the
fundamental requirement is a way to advance (or consume)
the current state. Regular expressions implicitly advance
the stream of characters: abc means an a followed by a
b followed by a c. This can also be read as the regex a
followed by the regex bc. This is called concatenation.
Playspecs have more complex syntax for each individual
state so we use a comma (,) to indicate concatenation; it
could be read as and then or followed by. A simple example
using Prom Week: the Playspec Doug-mean-Chloe,
Doug-guilty, Doug-nice-Chloe would only
match traces in which the player had Doug do something
mean to Chloe, then made him feel guilty, and then had him
be nice to her. Each of these three basic facts is checked in
turn against successive positions of the trace.

A designer doesn’t always know in advance how long
a property should hold. For instance, we might want to
find traces where two characters begin dating but eventu-
ally break up. This is analogous in regex to asking for
a lowercase letter eventually followed by a number us-
ing the Kleene star ([a-z].*[0-9]); there can be any
number of characters between our two points of interest



PuzzleScript Playtraces Prom Week Playtraces
Original Trace Sequence of Sets of Facts Original Trace Sequence of Sets of Facts

{start_state:
’=======
=.....=
=O*..P=
=.....=
=======’,
moves:[
’left’,

turn = 1, move = left,
...,
layer0 @ (1,2) = background,
layer1 @ (1,2) = target,
layer0 @ (2,2) = background,
layer2 @ (2,2) = box,
layer0 @ (5,2) = background,
layer2 @ (5,2) = player,
...

<SocialGameContext
gameName=’Share Interest’
initiator=’Doug’
responder=’Jordan’
effectID=’8’
chosenItemCKB=’retro phone’/>

time = 1,
doug-!share_interest(8, ’retro phone’)-jordan,
chloe-cool=0.7-doug,
chloe-romance=0.8-doug,
chloe-friend=0.5-doug,
...

’left’, turn = 2, move = left,
...,
layer0 @ (4,2) = background,
layer2 @ (4,2) = player,
layer0 @ (5,2) = background,
layer0 @ (6,2) = background,
...

<SocialGameContext
gameName=’Pick-Up Line’
initiator=’Chloe’
responder=’Doug’
effectID=’6’>

<SFDBLabel type=’funny’
from=’Chloe’ to=’Doug’/>

<SFDBLabel type=’romantic’
from=’Chloe’ to=’Doug’/>

</SocialGameContext>

time = 2,
chloe-!pick_up_line(6)-doug,
chloe-funny-doug,
chloe-romantic-doug,
chloe-cool=0.7-doug,
chloe-romance=0.9-doug,
chloe-friend=0.6-doug,
...

... ...

’left’
]

}

turn = 3, move = left,
winning,
...,
layer0 @ (1,2) = background,
layer1 @ (1,2) = target,
layer2 @ (1,2) = box,
layer0 @ (2,2) = background,
layer0 @ (2,2) = player,
...

<SocialGameContext
gameName=’Reminisce’
initiator=’Doug’
responder=’Chloe’
effectID=’8’
other=’Jordan’/>

time = 16,
doug-!reminisce(8, jordan)-chloe,
...

Figure 3: Play trace data from a simple PuzzleScript game and Prom Week. For each game the left column illustrates how play
traces are recorded, while the right shows (abstractly) the information made available for Playspecs to query at each timestep.

(the letter and the number), just as any sequence of game
states or player actions may transpire between the charac-
ters falling in and out of love. In Playspecs, this repetition
might be written as Doug-dating-Chloe 1..., not
Doug-dating-Chloe. The use of ... is read as dating
until no longer dating (the preceding numeral 1 requires that
the characters are dating for at least one state). The ellipses
describe potentially multiple states in which a property holds
(Doug-dating-Chloe in our example), with true as a
default. ... is also greedy: it will prefer to consume as many
states as possible when matching. The .. variants consume
as few states as possible. When there are multiple matches,
these operators will yield all the same matches in opposite
order. Minimum and maximum bounds can also be provided
(as in 1...), and these default to 0 and infinity.

The regex notion of alternation can be used to discover if
at least one of several Playspecs holds. We can look for either
an a followed by a b or else xyz using the regex ab|xyz.
To avoid ambiguity with the state language’s propositional
disjunction |, and for symmetry with the , of concatenation,
Playspecs use ; for alternation. Continuing with the dating
example, we might want traces where Doug ends up single,
i.e., he breaks up with whoever he dates or else never dates in
the first place. The Playspec not Doug-dating-Chloe
...; Doug-dating-Chloe 1..., not Doug-
dating-Chloe matches when Doug never dates Chloe or
they date before eventually breaking up, but doesn’t account
for Doug and Chloe resuming their relationship and staying
together afterwards. By applying the repetition operator
to that whole specification, we can match only traces in
which Doug never lives happily ever after: start, (not
Doug-dating-Chloe...; Doug-dating-Chloe
1..., not Doug-dating-Chloe)..., end.

Note that the number of states consumed
by the alternation depends on the branch that
matched. A Playspec like Doug-lonely,
(Doug-dating-Chloe; Doug-friends-Oswald,
Doug-friends-Jordan), not Doug-lonely
consumes either three or four states. Alternation can be
understood as cloning the expression once for each operand
(i.e., either side of the ;), replacing the expression with each
of the operands, and succeeding if any of these clones match.

As a notational convenience, we introduce ˆ, read as and
or intersection, which is dual to ;. Like ;, it effectively
clones the Playspec for each operand. Unlike ;, all clones
must match the same portion of the trace for the match
as a whole to succeed. For simplicity we require that all
operands consume the same fixed number of states or that
they can be stretched via ... to fit the same segment of
trace. Formally, this is the intersection of languages: a
grammar which only matches strings that appear in both
languages. This syntax can be used to find play traces
where multiple paths leading to a single state must contain
certain events or state sequences. Suppose we want to know
when Doug becomes enemies with his former friend and
lover, regardless of whether their initial relationship was
Platonic or romantic: (..., Doug-friends-Chloe,
... ˆ ..., Doug-dating-Chloe, ...),
Doug-enemies-Chloe. While regex libraries in
most programming languages do not offer intersection, we
include it, in part to help define universal quantification (an
extension we leave for future work). Further examples of the
Playspec syntax described thus far can be found in Fig. 2.

So far, our syntax only recognizes play traces of finite
length. While not applicable for matching existing traces,
Playspecs which specify traces of infinite length can be useful



for verifying game designs. Checking for infinite loops can
detect cases where players get stuck, which would only show
up as quitting in a real trace. To forbid such infinite traces,
we must be able to describe them. We therefore assume by
default that Playspecs recognize finite portions of traces,
but introduce syntax for recognizing an infinite suffix which
satisfies a Playspec repeatedly. The forever operator (called
ω in ω-regex) is written with ***: it is a semantically and
visually lifted version of ... indicating that the Playspec it
modifies repeats forever. It may only appear at the end of a
Playspec, and it will not match any finite play trace. Unlike
..., it accepts no time-bounding arguments.

4 Integration with Existing Games
There are two main decisions when integrating Playspecs
with an existing game or game engine: the degree of formality
and the content of traces. For Prom Week, we use Playspecs
to filter and match existing play traces; this requires the least
effort but is also the least flexible. With PuzzleScript, we
generate solutions using heuristic search and then test those
solutions against Playspecs; this requires few modifications
to the underlying game engine, but exhaustively checking
solutions has a high computational cost. Formally modeling
the game under consideration would require extra authoring
effort but could answer targeted queries very quickly.

The first step towards integrating Playspecs is transforming
the game’s play traces into sequences of sets of facts. This
could involve modifying how traces are recorded, converting
traces in an external tool, or performing on-demand transla-
tion into this format. In PuzzleScript we start with a sequence
of input directions which we replay through the game engine
to recover the configuration of the level at each step. We write
Playspecs over these augmented traces. A game with more
complex state might define each set of facts implicitly via a
function that determines the truth of a proposition.

Fig. 3 shows examples of play traces both in game-native
formats and after augmentation with extra state data from re-
simulating the recorded input sequence. The concrete syntax
shown is only for illustration: for example, each “set of facts”
in the PuzzleScript traces is stored as an array of integers.

As for what comprises a trace, there are three important fac-
tors. First is the trace’s level of abstraction: the game activity
represented in the trace. A trace might contain frame-by-
frame or turn-by-turn game states or abstract level-by-level
progression. Frame-by-frame traces will be too fine-grained
for most use cases besides the unit-testing application.

Second is whether the trace contains instantaneous events,
durative states, or both. Using only game events will yield
more compact traces, but some specifications may be harder
to write; on the other hand, traces with only states may
make other Playspecs awkward. Including both (or recov-
ering states by replaying inputs) can be a good option.

Finally, the implementer must decide on a syntax for game-
specific basic facts. These often use tokens and syntactic
structures outside of the existing Playspec grammar, for ex-
ample Prom Week’s relationship tests or PuzzleScript’s 1D
patterns. Parsing and checking these predicates is necessarily
implementation-dependent, but we believe a portable gram-
mar formalism could cover most use cases; due to space

limitations we leave that for future work. Our JavaScript
reference implementation instead provides a customizable
parser. One could also imagine a generic fact syntax.

5 Checking Playspecs
We now outline algorithms and applications of existing tools
to check Playspecs. The simplest case is matching a Playspec
against a specific witnessed trace. As with regular expres-
sions, Playspecs are efficiently matched by mechanical trans-
formation into finite automata or an equivalent representa-
tion (Thompson 1968; Cox 2011). Playspecs using the ***
operator may be rejected in this application—any real play
trace is necessarily finite. The main difference from regex
matching algorithms is that instead of checking a stream of
bytes against values or ranges of values, an implementation
checks a sequence of states against logical formulae over
each state’s set of facts. If a specific game already supports
more formal usage of Playspecs, that work can be reused
to decide whether an observed trace meets a Playspec: for
example, a trivial formal model could be synthesized which
only advances through the states in a given trace.

The second level of formality pairs Playspecs with search.
For PuzzleScript, we developed a heuristic search which
solves levels and then ensures those solutions match given
Playspecs. We currently only match against complete solu-
tions, but it would be straightforward to match each candidate
action incrementally to guide search towards solutions that vi-
olate the specifications. Integrating Playspecs with the Puzzle-
Script engine required minimal additions beyond the reload-
ing and replaying necessary for the automated solver’s oper-
ation; parsing and evaluating the basic facts largely reused
built-in features of the engine.

Finally, we consider the verification of Playspecs given
a formal model of the game design. Program verification
tools commonly work by transforming both the input pro-
gram (often in a special-purpose modeling language) and the
negation of a logical specification into Büchi automata (the
infinite analogue to finite automata), intersecting them, and
finding whether there is any sequence of inputs accepted by
the newly constructed automaton (Courcoubetis et al. 1993).
This deserves unpacking. Büchi automata are used instead
of the regex-equivalent finite state automata because pro-
grams running in finite memory have finitely many states,
but may loop infinitely. We use the negation of the speci-
fication to find whether a trace can be produced which vi-
olates the original specification, in other words one which
satisfies its negation. Intersecting two automata means pro-
ducing a third which only accepts those traces which both
the originals would accept—those traces that the program
could conceivably produce which also satisfy the negation
of the specification. Finally, detecting non-emptiness of the
language represented by the resulting automaton tells us
whether there exist problematic traces. This last check is
computationally easy once all the other work has been done.
All this is to illustrate that Playspecs can be checked by
standard algorithms and, indeed, by many standard tools,
since they are readily translated to conventional ω-regular
expressions and thence to Büchi automata (Holzmann 1997;
Cimatti et al. 2000; Duret-Lutz and Poitrenaud 2004). The



Playspec and the formal model should be at the same level
of abstraction here—for instance, if the Playspec concerns
game turns rather than frames, the model should as well.
In practice, formal models could certainly be authored by
hand using formalisms like transition systems, event calculus,
Machinations diagrams (Dormans 2009), or a partial order
of requirements (Van der Linden 2013). Existing non-game
modeling languages like Promela (Holzmann 1993) are also
excellent candidates, and the translation from Playspecs to
a format which those tools support is straightforward and
could be automated. If the implementer wants to work di-
rectly against their game’s program code, semi-automated
tools like SPOT can transform a conventional program into
an automaton with some API support (Duret-Lutz and Poitre-
naud 2004). There are also program verification tools which
can recover models from programs without such API help at
the cost of larger models, e.g. DiVinE (Barnat et al. 2013).

Finally, it is worth noting that there are many extensions
to both linear temporal logic (a conventional verification lan-
guage which is translated into the Büchi automata described
above) and regexes, ripe for inclusion into Playspecs. Some
examples include Metric-LTL (Koymans 1990), which is
appropriate for realtime systems like action games; regex
lookaround, which could make phrasing certain properties
much more concise; first-order quantification, which permits
a high level of abstraction over traces — in short, Playspecs
that don’t check the state of specific characters (like Doug or
Oswald) but rather the states of roles that could be filled in by
any character (“Doug’s friend”, “Oswald’s lover”) (Kröger
and Merz 2008); Probabilistic-LTL which describes likely
versus unlikely possibilities (Baier 1998); and regex-style
capture groups to identify particular subsequences of interest
within the matched segment of a play trace (our reference
implementation supports this extension already).

6 Related Work
Playspecs are strongly related to previous logical formalisms
that have been proposed for specifying game traces. The
most similar is probably the trace grammar proposed for Lu-
docore (Smith and Mateas 2011). This formalism queries
existing traces with arbitrarily quantified Boolean formu-
lae using a Prolog-like syntax, a subset of which can be
used with a logical game engine to perform targeted search.
Compared to the high computational complexity of this ap-
proach, Playspecs with their linear-time, backtracking-free
match-query procedure fill a potentially large niche for which
the prior work is inappropriate. Furthermore, Playspecs inte-
grate with existing program verification tools and the regular
expression-like syntax may be easier for game designers to
author than the Prolog-like syntax of the prior work.

In general, techniques which permit the formulation
and checking of useful properties over game traces re-
quire a total investment in formal methods, including logi-
cally modeling much of the game in question (Smith, Nel-
son, and Mateas 2009; Shaker, Shaker, and Togelius 2013;
Butler et al. 2013). Playspecs offer a scalable investment in
formality: it should be possible to write Playspecs over ex-
isting traces with relatively little effort to determine whether
Playspecs will be of use to the designer. Further integration

with a game engine or formal game modeling can be ap-
proached piecemeal and use the exact same specifications.
One could even use Playspecs as a frontend, reducing them
to sets of first-order logic event calculus statements.

These latter tools are often referred to as automated
playtesters; besides such player-centric testing, Playspecs
can support the unit-testing activities of game programmers.
In this sense, they could be viewed as a generalization of
Inform 7’s Skein (Nelson 2006): instead of expecting a
concrete output text for a given input sequence, a tester
could provide inputs and require that, on replay, the re-
sulting trace satisfies one or several Playspecs. Playspecs’
ability to elide details about the sequence of game states
should make writing unit tests for games easier and more
modular. If the input sequence were also generated via
Playspecs, property-based testing tools (Arts et al. 2006;
Hughes, Norell, and Sautret 2010) could find violations; this
is an incomplete solution compared to formal verification,
but might be easier to integrate with existing software.

Finally, we note that some effort has been expended on
converting puzzle solutions into strings where each character
encodes information about a solution step (Andersen, Gul-
wani, and Popovic 2013). We have learned via personal com-
munication that researchers have analyzed such strings using
textual regular expressions; this is similar to our method in
that it uses regular expressions, but it is less general.

7 Conclusion
We have described Playspecs, motivations for their use, ways
to integrate them into existing games and game engines, and
related work in the field of games. Implementers can use this
paper and our reference implementation as a starting point.

We hope that game developers—especially game engine
developers—adopt Playspecs at least at the level of match-
ing and selecting existing or randomly generated traces, and
ideally that they offer ways to drive their game engines via
Playspecs. We further hope that game researchers will con-
sider Playspecs as their language of choice for specifying
properties of interest for formal models of games. We be-
lieve that as a language for defining the evolution of game
states over time, Playspecs could undergird a rigorous study
of game dynamics in the sense used by the MDA frame-
work (Hunicke, LeBlanc, and Zubek 2004), which are so far
under-theorized compared to game mechanics and aesthetics.
Playspecs could be applied to AI play by running them back-
wards, generating rather than recognizing traces (as in the use
of linear temporal logic in the planning community (Baier
and McIlraith 2006)). We also suspect that Playspecs (per-
haps with fuzzy or probabilistic extensions) have applications
for general game playing, particularly in opponent modeling
or characterizing sets of play traces produced by random or
self-play. They could also be used in generative systems to
filter out generated content that violates designer-specified
invariants, or to support player-adaptive games by matching
against the currently-unfolding play trace (perhaps in the
service of drama management).

With extensions for first-order quantification, Playspecs
could describe game rules directly; the authors have done so
for noughts-and-crosses and other simple games. The insight



is that a game implicitly defines a set of valid input traces,
and Playspecs also define sets of traces. Game rules whose
effects are distributed over time or with complex conditions
are especially good candidates for definition in this style.

Playspecs’ utility is determined in large part by the natural-
ness of their syntax. Making this syntax convenient enough
to define on a game-by-game basis is key to their success and
represents important future work.
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In Proceedings of the IEEE Computer Society’s 12th International
Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems, 76–83. IEEE.
El-Nasr, M. S.; Drachen, A.; and Canossa, A. 2013. Game analytics:
Maximizing the value of player data. Springer Science & Business
Media.
Holzmann, G. J. 1993. Design and validation of protocols: a tutorial.
Computer Networks and ISDN Systems 25(9):981–1017.
Holzmann, G. J. 1997. The model checker spin. IEEE Transactions
on software engineering 23(5):279–295.

Hughes, J.; Norell, U.; and Sautret, J. 2010. Using temporal relations
to specify and test an instant messaging server. In Proceedings of the
5th Workshop on Automation of Software Testing, 95–102. ACM.
Hunicke, R.; LeBlanc, M.; and Zubek, R. 2004. Mda: A formal
approach to game design and game research. In Proceedings of the
AAAI Workshop on Challenges in Game AI, volume 4.
Koymans, R. 1990. Specifying real-time properties with metric
temporal logic. Real-time systems 2(4):255–299.
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2011. Feature-based projections for effective playtrace analysis. In
Proceedings of the Sixth International Conference on the Founda-
tions of Digital Games, 69–76. ACM.
Mateas, M., and Wardrip-Fruin, N. 2009. Defining operational
logics. Digital Games Research Association (DiGRA).
McCoy, J.; Treanor, M.; Samuel, B.; Mateas, M.; and Wardrip-Fruin,
N. 2011. Prom week: social physics as gameplay. In Proceedings
of the Sixth International Conference on the Foundations of Digital
Games, 319–321. ACM.
McCoy, J.; Treanor, M.; Samuel, B.; Reed, A.; Mateas, M.; and
Wardrip-Fruin, N. 2014. Social story worlds with comme il faut.
IEEE Transactions on Computational Intelligence and AI in Games
PP (99) 1–1.
Nelson, G. 2006. Natural language, semantic analysis, and interac-
tive fiction. IF Theory Reader 141.
Osborn, J. C., and Mateas, M. 2014. A game-independent play
trace dissimilarity metric. Proceedings of the Ninth International
Conference on the Foundations of Digital Games.
Osborn, J. C.; Lederle-Ensign, D.; Wardrip-Fruin, N.; and Mateas,
M. 2015. Combat in games. In Proceedings of the Tenth Interna-
tional Conference on the Foundations of Digital Games.
Provinciano, B. 2015. Automated testing and instant replays in
retro city rampage. In Game Developers Conference.
Shaker, N.; Shaker, M.; and Togelius, J. 2013. Evolving playable
content for cut the rope through a simulation-based approach. In
Proceedings of the Ninth AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment.
Smith, A. M., and Mateas, M. 2011. Towards knowledge-oriented
creativity support in game design. In Proceedings of the 2nd Inter-
national Conference on Computational Creativity.
Smith, A. M.; Butler, E.; and Popovic, Z. 2013. Quantifying over
play: Constraining undesirable solutions in puzzle design. In Pro-
ceedings of the Eighth International Conference on the Foundations
of Digital Games, 221–228.
Smith, A. M.; Nelson, M. J.; and Mateas, M. 2009. Computational
support for play testing game sketches. In AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment.
Thompson, K. 1968. Programming techniques: Regular expression
search algorithm. Commun. ACM 11(6):419–422.
Van der Linden, R. 2013. Designing procedurally generated levels.
Ph.D. Dissertation, TU Delft, Delft University of Technology.


