
Towards General RPG Playing

Joseph C. Osborn
Computational Media

University of California, Santa Cruz
1156 High St

Santa Cruz, California 95064

Ben Samuel
Computer Science

University of New Orleans
2000 Lakeshore Dr

New Orleans, Louisiana 70148

Adam Summerville, Michael Mateas
Computational Media

University of California, Santa Cruz
1156 High St

Santa Cruz, California 95064

Abstract

General videogame playing has come a long way in a short
period of time, but remains at the level of solving relatively
short games made up of distinct and isolated episodes. Even
simple console role-playing games (RPGs) are far beyond the
reach of current techniques, requiring the synthesis of cul-
tural knowledge with compositional reasoning over several
interconnected sub-games. We explore how the challenges of
playing these games could spark new advances in composi-
tional analysis of games and common-sense reasoning.
General RPG playing can leverage advances in episodic gen-
eral game playing and in areas like text understanding, image
classification, and automated game design learning. It has di-
rect applications in design support and AI-based game design,
and the techniques used to enable it could generalize to other
families of games such as adventure, open-world, and simu-
lation games. In this paper, we describe the motivation behind
general RPG playing in a sub-domain of Nintendo Entertain-
ment System (NES) RPGs, some promising approaches to
some of its fundamental issues, and immediate next steps; we
conclude by describing a few concrete benchmark problems
on the path towards automated play of these complex games.

Introduction

General (video)game playing is an established research area
with several active threads; as a natural stepping-stone to
artificial general intelligence it is an attractive target for aca-
demic and industrial research labs alike (Genesereth, Love,
and Pell 2005; Perez-Liebana et al. 2016a; Bellemare et al.
2015). Human-like (or at least strong) general game-playing
AI also seems necessary for many approaches to automated
game design support and game generation (Smith 2013;
Barros et al. 2015). Unfortunately, these systems are limited
to episodic games for which planning can succeed only over
relatively short time horizons (minutes at most, or a few hun-
dred turns in discrete games), even with considerable com-
putational resources. Longer games are inaccessible to these

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

techniques unless they are split into smaller episodes, but
this splitting is generally ad hoc and game-specific; more-
over it has not been shown for games with complex inter-
nal structure. Agents can do well in situations like a DOOM
deathmatch because each individual encounter with an en-
emy is more or less independent, and the high-level struc-
ture of moving between firefights and looking for powerups
is extremely simple. Moreover, both types of play share the
same basic input modalities, short-term rewards, and so on.

Successful game-playing agents generally learn policies
for maximizing their probability of victory, but rarely re-
cover knowledge about a game’s (implicit) rules or high-
level design features. There are some exceptions in the do-
mains of general game playing (Clune 2007) and general
videogame playing (Perez-Liebana et al. 2016b). The auto-
mated play of specific, individual games can in theory be
achieved using approaches from expert systems or deep Q-
learning, but these might fail to generalize to new games or
even to variations on the same game; classical search-based
approaches often fail to scale to longer games without a pro-
hibitive amount of domain knowledge. On the other hand,
recent research in schema networks seems like a promising
approach which reinforces the notion that we must learn de-
sign information explicitly in order to transfer knowledge
and skills across games (Kansky et al. 2017). Automated
game design learning has been recognized as an impor-
tant problem with many application areas including general
game playing (Osborn, Summerville, and Mateas 2017).

Real-time strategy games comprise an active area of re-
search for game-playing agents generally optimized for spe-
cific games (Ontanón et al. 2013). Given the successes of
RTS AI, we suggest exploring the general play of a different
genre: console role-playing games (RPGs) like Dragon War-
rior or Final Fantasy. These games are typified by highly
compositional design relying extensively on both cultural
knowledge and numeric reasoning over probabilistic com-
bat models, exercising different aspects of commonsense
reasoning than existing RTS or arcade game players. By
compositional design, we mean a game design consisting of

The AIIDE-17 Workshop on
Experimental AI in Games 

WS-17-19

92



many distinct game systems with significant interactions be-
tween systems (e.g., exploration, combat, item economies,
and plot progression). These games have many iterations,
sequels, hacks, and even randomizers, yielding a substan-
tial corpus whose members share some similarities but also
introduce game-specific concepts, systems, and user inter-
faces. We can usefully investigate problems of composi-
tional game understanding and transfer in the special case
of general RPG playing.

General RPG Playing
To address compositional game understanding, it is impor-
tant to identify the sub-components (or sub-systems) that,
when combined, form what a human player would likely
identify as a role playing game. Breaking down RPGs into
these constituent parts is an important first step in determin-
ing an effective knowledge representation. Moreover, this
process provides a clear (if somewhat naive) blueprint for
accomplishing our goal of developing a general RPG player,
as this goal can be broken down into creating game players
for each of the game’s sub-systems. These sub-systems do
not operate in isolation, but inform and communicate with
each other; we hope to leverage previous work in RTS play-
ing where sub-component managers cooperate to achieve a
shared goal (Weber, Mateas, and Jhala 2010), lifting this to
the level of learned goals and systems.

At a high level, many NES-era RPGs take the form of
sweeping epics where players control an individual or a
small party to overcome impossible odds and defeat the
forces of evil. RPGs typically involve exploring the world,
conversing with Non-Player Character (NPC) townsfolk and
royalty, battling countless monsters or named villains in both
random and scripted combat encounters, and applying the
spoils of war towards the acquisition of equipment that as-
sists in subsequent fights. Though each game has its own id-
iosyncrasies, several components seem to be shared by most
games in the genre:

Movement: RPG game worlds are typically represented as
a series of tile-based maps. Each tile has a variety of prop-
erties, including: their appearance; whether the player can
walk through them; whether they might trigger a fight (the
tile’s safety); or if they are a link to another map. Some tiles,
often grasslands or deserts, are passable by default, while
others can only be traversed when the player owns a certain
item or is riding a vehicle (e.g., Final Fantasy’s oceans can
be traversed by ship, and rivers by canoe), and still others
are completely impassable. Some tiles transition the player
from one map to another (e.g., stepping on a tile that looks
like a picture of some buildings opens a new map, with a
new tileset, that represents the town). Individual maps are
often named, and successfully remembering the locations of
these maps—and their relative positioning to each other—is
integral for solving puzzles and advancing the plot.

Combat: Combat in NES-era RPGs generally occurs in
a separate interface from movement, where battle actions
are selected through menu navigation (covered in more de-
tail below). Combat is essentially a game of resource and
state management. The player’s characters typically have a
numeric representation of their life force (often written as

HP for Health/Hit Points) that when depleted puts them in a
knocked out state; if the entire party is knocked out, the game
typically ends and the player must restart from a set location
or a saved game. Most characters also have MP or Magic
Points that determine how many times they can use special
abilities, though the nature of this quantity is game-specific.
For instance, in Final Fantasy, a character has eight MP val-
ues, where each value signifies the number of times they can
cast a spell of the corresponding rank; in Dragon Warrior,
MP is a single quantity that decreases by a set amount based
on the cost of the spell cast, with more powerful spells cost-
ing more MP. Tools from numeric transition systems might
be appropriate to apply here, for example by synthesizing
integer programs approximating the combat simulation; we
might also be able to learn the effects of specific combat ac-
tions by Bayesian inference.

There are also attributes like attack power and magic
power which affect a character’s combat prowess, that can be
bolstered through purchased and looted equipment. Though
typically higher numbers are better, some games involve
characters that are meant to specialize in particular at-
tributes. Besides permanent equipment, there are often con-
sumable items that adjust resources and states (e.g., items
that restore HP or MP, restore a party member with the
knocked out status to fighting condition, etc.). To compli-
cate things further, most games have non-combat items or
abilities that indirectly affect the sub-game of resource man-
agement, such as the Dragon Warrior series’ Wing of the
Wyvern item which teleports the player to a previously-
visited town and its available shops and amenities.

Menus: Though menus are an important aspect of combat,
many other systems rely on menu navigation as well. Most
RPGs include shops where equipment can be purchased with
coin accrued through combat; these shops are almost always
menu-based (some exceptions have the player bump into the
item they wish to purchase).

Navigating menus is often a prerequisite to playing the
game. Some games involve choosing a save slot (e.g.,
Dragon Warrior), while others do not (e.g., Final Fantasy).
Many involve naming the character(s) that comprise the
party. Some games ask the player to determine the make-up
of the party, which has significant ramifications for future
gameplay decisions. In Final Fantasy, the party makeup is
determined at the beginning of the game, while in Dragon
Warrior 3 the number and type of characters can be changed
during play at a specific location, and in Final Fantasy 3
the party members’ character classes (and thus the party
makeup) can change at essentially any time outside of bat-
tle. Creating a viable party, purchasing and equipping equip-
ment, and surviving combat are all strictly necessary for the
success of a general RPG playing agent.

NPC Interaction: Outside of menu-based shops, most
NPC interaction typically involves speaking to characters,
which brings up a panel with text representing the lines
of dialogue uttered by the character. Unlike many modern
RPGs—where dialogue with NPCs often involves selecting
choices from a dialogue tree—most NES-era RPGs afford
players little opportunity to direct the flow of conversation,
besides the occasional binary choice.

93



However, even if players cannot speak in these games,
it is vital that they listen. NPCs will often tell the player
where to go next; speaking to (and listening to) NPCs is of-
ten the difference between aimless wandering and goal di-
rected play for human players. An effective general game
player would seem to require some amount of natural lan-
guage understanding, and ability to semantically link key
phrases mentioned by NPCs (location names, items, etc.)
to its understanding of the game world (e.g., dungeon and
town locations). Interestingly, Final Fantasy 2 treats some
key phrases as items that must be obtained from conversa-
tion and used on other characters later; some other games
highlight key terms in dialog with differently colored text.

While RPG systems interact strongly over both short and
very long time horizons, they also have many symmetries
and an AI player must be able to abstract over these. Navi-
gation is the most obvious source of symmetries, but many
inventory actions and combat outcomes are reversible: each
combat is independent in some sense but variables like cur-
rent health are carried over, so strategies have to change
based on the whole initial state of the combat. On a longer
time-scale, going to an inn essentially resets combat-related
statistics, so in some sense an episode has ended; but now
the player characters might be in a different location, or they
may have become stronger by purchasing new equipment
or gaining character levels. From some perspectives, events
are independent; but from others, they are deeply intercon-
nected. Human players can readily shift between these reg-
isters to achieve their goals.

RPGs are composed of a large number of these complex
pieces; fortunately, the interactions between pieces are along
well-defined boundaries even if these boundaries are game-
specific. General RPG playing can be seen as the project
of automatically decomposing a game into subsystems from
fixed categories and determining the interactions between
these components to inform mechanisms like hierarchical
planning. In the specific case of RPG playing, we can lean
on genre conventions to limit the scope of possible types
of systems (though each game has its own specific designs
of these system types), which in turn puts an upper bound
on the number of distinct sorts of ways they can be com-
bined. Taken together, this can be a useful first step on the
way to fully compositional reasoning over games in general.
By learning these pieces individually, we hope to create a
player capable of progressing through many distinct RPGs
that leverage them.

An RPG-playing agent must read on-screen text and rec-
ognize (or learn the meanings of) words like health, enemy,
or gold—and connect these to resource economies and pro-
gression systems. It has to understand that a monster with
a fiery appearance or located in a dungeon with a volcano-
like appearance is likely to be weak against spells and abil-
ities that connote wetness or coldness—and connect this to
the choice of equipment and attacks in combat. It must talk
to and understand non-player characters to obtain necessary
information to continue in the game, for example to learn
boss enemies’ weaknesses or the locations of key items—
and tie this into combat and navigation. Recognizing explicit
instructions seems hard enough; oblique hints and analogic

Game Mode Overlay detection*
State classification (map/combat/etc)

Movement Map-making*
Tile properties
Location names

Combat Available actions
Equations of combat
Distinct character states
Enemy properties

Inventory Menu navigation*
Inventory structure
Equipment and character statistics
Using/equipping items appropriately
Planning based on inventory/character
statistics

Dialogue Activating NPC dialog
Questions with immediate effects
Questions with deferred effects

Puzzles Walkthrough-guided solving
Spatial juxtaposition puzzles
One-off/puzzle-like combat interactions

Progression Recognizing plot-advancing moments
Returning to previously visited loca-
tions when plot flags change

Cultural
Knowledge

Bootstrapping with statistic, item, or
equipment names
Recognizing likely enemy weaknesses
Understanding hints in NPC dialog

Table 1: Subproblems and steps towards general RPG play-
ing. Tasks addressed in this paper are marked with *.

reasoning (for example, graphical hints in dungeons’ puz-
zles) seem extremely challenging. It also seems likely that
transfer between games is important—games in the same se-
ries generally build on prior games’ concepts, and there are
similarities across series as well (enemies can have differ-
ent type affinities, with fire-type enemies being weak against
water, and so on). Does it matter what order an AI plays
games in?

Finding solutions to all these problems is not only neces-
sary for general RPG playing, but might shed light on other
questions of particular interest in commonsense reasoning
and could even inform the design of RPGs in the future. We
summarize this section in Table 1.

Progress So Far

For now, we restrict our attention to RPGs on the Nintendo
Entertainment System (NES); this is mainly because there
is existing work in automatically extracting high-level de-
sign knowledge from games on this system (Summerville
et al. 2017; Summerville, Osborn, and Mateas 2017). We
propose a seed corpus of eight highly notable games: Final
Fantasy and its two sequels, Dragon Warrior and its three
sequels, and Mother. Enthusiasts have written randomizers
for Final Fantasy and the first two Dragon Warrior games;
these tools produce random variants which reshuffle nu-
meric statistics and dungeon layouts. Several of these games

94



Figure 1: Automatically extracted map from Final Fantasy.
Note that rooms 1 and 3 should be merged.

also have manually-constructed variants (ROM hacks) which
are essentially different games written for the same engine.
In this paper, we pay special attention to Dragon Warrior
and Final Fantasy.

Many of the tasks described here have the flavor of com-
puter vision, even if they are not always done from raw pix-
els. We see the work so far—building maps and identify-
ing screen transisions, detecting the windows and text of the
game’s user interface, and so on—as lifting us from the level
of pixels up to a semantic domain where work on composi-
tional game reasoning can begin in earnest.

Automatic Mapping

Mappy, a recent open-source project in extracting level de-
sign information from NES games, shows initial results on
pulling both room-level maps and high-level links between
maps from action-adventure games (Osborn, Summerville,
and Mateas 2017). Running Mappy with manually-tuned pa-
rameters obtains pretty good results for Final Fantasy and
Dragon Warrior, but tuning these parameters automatically
remains important future work.

Mappy does not currently cluster similar rooms together
automatically, it does not aggregate information across mul-
tiple playthroughs, and it does not recognize that multiple
rooms might actually be part of one larger room (see Fig. 1).
We see these as instances of essentially the same problem. In
general, we feel that there are two questions of interest that
help decide whether two similar rooms are in fact the same.
First, do their tilemaps and sprite placements mostly agree
in the parts where the rooms seem to overlap? This is the
most obvious notion of similarity and the one which Mappy
already uses to recommend similar rooms for merging. Sec-

Figure 2: Automatically extracted map from Dragon War-
rior. Note UI elements that appear in room 1.

ond, we can also consider the links between these rooms
and other rooms: If both rooms have three exits and these all
take the player to the same or similar-looking rooms, that is
strong evidence that both rooms are the same room.

Overlay Detection

The bigger problem for Mappy is that game menus often
look like screen transitions or on-screen tiles (as witnessed
in the Mappy paper’s Zelda examples and room 1 of Fig. 2);
so we must augment Mappy with a way to distinguish sim-
ulated space versus a discrete menu. One way of knowing
what sort of screen the game is in might be to notice when
the object being controlled changes position and appearance
suddenly and starts following different physical rules—for
instance, teleporting around rather than moving with an ani-
mation, or moving on a different grid from before, or looking
like a finger or triangle instead of an animating humanoid.
But there might be menus or other screen overlays like dia-
logue boxes at times when the player is still controlling the
same character; in such cases we would not want to interpret
menu content as being part of the map. We therefore need
to rely on computer vision to detect overlays like menus and
message boxes, considering both the currently visible screen
and previously known information about the map and game
world. This is complicated by the fact that menus can nest,
overlap, and occlude each other.

Humans distinguish overlays from the map easily, perhaps
thanks to clues like thick borders, low-complexity interiors,
and the presence of text. These kinds of features are read-
ily detected by off-the-shelf algorithms, so we developed
a quick prototype of a tool to detect rectangular overlays
covering up parts of an NES game’s display. We first con-

95



Figure 3: Overlay detection in Dragon Warrior (top four im-
ages) and Final Fantasy (bottom two images). Green rectan-
gles show current overlays (live overlays that are covered up
are tracked but not shown). Note false positives in the middle
two images.

vert the display to grayscale and blur the image. Next we
erode the image to paper over noisy lines, which are often
caused by text or cursors overlapping the border. We then
use OpenCV’s contour detection algorithm, looking for con-
tours which are well-approximated by rectangles and which
are neither too small, too large, nor too redundant to other
detected rectangles. We call any such rectangle which has
been in the same spot for more than 30 frames current.

Since overlays can overlap, the appearance of a new over-
lay might cause the above algorithm to miss an overlay
which is partially or completely hidden. We solve this by
storing a list of live overlays from frame to frame, adding
overlays when they become current, and removing an over-
lay if it is not current and it is not overlapped by any more
recently found (and thus visually higher) overlay. This pro-
cess (shown in Fig. 3) can still produce false positives, but
these are generally harmless with respect to mapping and
could be resolved in the future by looking at containment
relationships or being more stringent about the presence of a
border. The more dangerous type of false positive is recog-
nizing a piece of level structure as an overlay; but this case
can be easily avoided by retroactively discarding such false
overlays if they are seen to scroll smoothly with the rest of
the world. Given this overlay recognition algorithm, Mappy
could be extended such that it does not consider tiles close
to or contained within an overlay to be observed for the pur-
pose of mapping.

Which Message
Speed Do You
Want To Use?

FAST
� NORMAL
SLOW

Nhich Nassaga
Spaad Du Van
Man: In usau

FASI
yNuRNAL
SLDN

Figure 4: A representative menu choice from Dragon War-
rior (left) and its contents as interpreted by Tesseract (right).

Text Recognition

A large amount of information in RPGs is communicated
via text. Unlike in traditional parser games, this text is given
as an image, not as a string of characters. As such, Optical
Character Recognition (OCR) is required to turn the image-
based text into a more usable form. We have tried using
Tesseract (Smith 2007), a popular open source OCR engine
first developed by Hewlett-Packard Laboratories in 1985 and
under the care of Google since 2006. While one of the best
OCR engines available, it is apparently poorly suited out-of-
the-box for NES RPGs (see Fig. 4).

This indicates that the low-resolution square font is poorly
recognized. It is recognized as text, but with numerous mis-
takes (e.g., e becomes a). Tesseract allows for fine tuning of
their model via additional training, so it might be possible to
use representative low-resolution fonts to tune the model to
better recognize NES-style text.

Cultural Knowledge

We also have to consider a particularly hard question, and
one somewhat unique to adventure and role-playing games:
where does cultural knowledge about game content come
from? Many problems around figuring out what text and im-
ages mean or where objects are hidden in the world can be
solved through brute force or learned via directed experi-
mentation, but we would prefer our agent to play as much
like a person as possible. One workaround might be to give
the agent the information a walkthrough of the game or in-
struction manual might provide: what the plot events are,
how to trigger them, what the strengths and weaknesses of
enemies and weapons are, and so on (this proved to be help-
ful for automated play of Civilization 2 (Branavan, Silver,
and Barzilay 2011)). A lighter touch would be to give the
equivalent of a translation guide: meanings of key words in
the game plus only the most vital information that in-game
text provides, in a machine-legible format. Learning con-
cepts from a corpus of fantasy novels or fairy tales (or walk-
throughs of arbitrary and perhaps unrelated games) might
also help an agent recognize the valence and significance of
terms like dragon, swamp, or king.

We can also consider giving this agent a human coach.
If the agent can communicate some of its state to a human
observer, and the observer has a way to influence the agent’s
learned structures, attention, or portfolio of approaches, then
a human could resolve cultural issues on demand as they
arise. The agent could be playing at much faster than hu-
man speed, notifying the coach when it sees some unfamiliar

96



object or interaction and providing its initial interpretation;
this could be corrected manually, or conversely the coach
would interrupt the agent with topical information about its
next task. Of course, this is of limited utility for fully gen-
eral game playing unless we allow and implement transfer
learning between games or store the results of this process in
some database available to general RPG playing agents; this
coaching could be seen as a way to capture domain knowl-
edge on an as-needed basis.

Next Steps
For agents without any knowledge of how games are struc-
tured, even a game’s title screens might be challenging to get
through. As mentioned earlier, an agent might need to begin
by selecting a save slot or choosing to start a new game, se-
lecting party composition, entering names, observing intro-
ductory cutscenes, and so on. It might be that random inputs
could eventually get through these screens, but they actually
embody several gameplay tasks that are important to under-
stand. An initial step towards general RPG playing might be
simply to get the game started; of course, choices around
party makeup might be essentially arbitrary until the game’s
rules are better understood, but perhaps we could ask the
agent to begin a game with a given target party composition
and character names, or else have it report that this cannot be
done before the game proper starts. Classifying the purpose
of each screen the game presents on the way to playing the
game seems useful and important, and could help the agent
recover from game-over states if these return the player to
the title screen. Here, one baseline would be random input,
and the target might be to match or come close to the perfor-
mance of game-specific hand-authored policies.

Once our agent is in the game and can control an avatar,
we might want to automatically construct a menu hierarchy
with some initial guesses about the purpose of each menu
item; this can be seen as generating part of an instruction
manual for how to play the game. We might also ask the
agent to determine what characters are in the party, what
resource pools and items might be available, and so on. We
can compare these learned structures against ground truth.

A natural next step is to determine which character on
screen we are controlling, and when we are exploring versus
when we are in combat; here, the goal might be to explore
as much of the world as possible before dying, ultimately
producing a map whose size and accuracy can be used to
evaluate the agent. If we know when we are in a menu, nav-
igating on the map, in combat, or in other modes, we can
also use specialized algorithms to play through those seg-
ments. We might choose to admit saving and restoring emu-
lator states, essentially allowing the agent to perform back-
tracking search via time travel (perhaps learning rewards
that maximize overall exploration of the rest of the game).
This could bootstrap combat AI, but of course we could
also approximate the underlying rules of combat by learning
probabilistic models under a Markov assumption and then
plan based on that representation. The latter approach would
help us communicate across parts of the game, suggesting
when our agent should heal up or buy new equipment—
decomposition of the combat task itself is explored in (Trem-

blay, Dragert, and Verbrugge 2014), which calculates an op-
timal joint agent target selection policy as a component of a
larger combat AI. Strategy game playing is a very active area
of research; if we can automatically decompose an RPG into
navigation, combat, and resource allocation we may obtain
good results quickly by leveraging existing agents.

We can construct similar tasks for learning the rules of
combat, equipping characters according to some criteria in
the first town, or obtaining a plot clue from non-player char-
acters. In this way we can eventually build up to achiev-
ing progression objectives and completing the game. Once
the fundamental decomposition of the game into component
sub-games is finished, we can start to improve on individ-
ual tasks in isolation, and compare performance (and game
structure) of an agent across different games in the corpus.

The human coaching described earlier could form the
foundation of interesting types of games: the player-as-
coach or the player-as-environment. This is an exciting ap-
plication area for AI-based game design (Eladhari et al.
2011), but one that has only begun to be explored. The God-
game Black & White had players train a gargantuan crea-
ture to serve as a proxy for their divine will; by praising and
punishing its behaviors, the creature eventually developed
an understanding of how (the player wanted it) to engage
with the world. In the real-time strategy games Majesty and
My Life as a King players construct a fantasy kingdom to
attract adventurers whom the player indirectly controls and
nurtures via incentives. Breath of Fire III features a brief
scenario where players train an NPC through combat; the
player must experiment with a variety of techniques to elicit
both offensive and defensive reactions from the NPC.

We imagine that such player-as-coach games would be
evocative of helping a schoolyard friend or sibling get past
a difficult battle or tricky puzzle in a game. By leveraging
game and cultural literacy that the system lacks, the player’s
effort is rewarded not only by witnessing the AI overcom-
ing its hardship, but in the unique pleasure that comes from
sharing understanding, and from crafting an experience for
another (Samuel et al. 2016). Both as a central component
and as a peripheral side-game, player-as-coach has shown
itself to be an engaging area for AI-based game design, and
we hope this work enables it to be explored more fully.

Ultimately, we believe that by investing in high-level rea-
soning over game and goal structures, and by extracting de-
sign features from games in order to formulate those goals,
we can lift episodic general game playing into the long-form
case. These are real-world games with quirks, bugs, and cul-
tural cachet; while the path to solving them is visible, it is
not totally clear. The problems we must handle to address
the concrete case of general RPG playing are also problems
for other types of games and other domains besides general
game playing including game design support, automatic tu-
torialization and adaptive difficulty adjustment, and game
generation. All this makes general RPG playing an attrac-
tive and interesting problem, and we look forward to work-
ing with the larger game AI community towards solving it.

97



References

Barros, G. A.; Togelius, J.; Nelson, M. J.; et al. 2015. To-
wards generating arcade game rules with vgdl. In Compu-
tational Intelligence and Games (CIG), 2015 IEEE Confer-
ence on, 185–192. IEEE.
Bellemare, M.; Naddaf, Y.; Veness, J.; and Bowling, M.
2015. The arcade learning environment: An evaluation plat-
form for general agents. In Twenty-Fourth International
Joint Conference on Artificial Intelligence.
Branavan, S.; Silver, D.; and Barzilay, R. 2011. Non-
linear monte-carlo search in civilization ii. In Twenty-
Second International Joint Conference on Artificial Intelli-
gence. AAAI Press/International Joint Conferences on Arti-
ficial Intelligence.
Clune, J. 2007. Heuristic evaluation functions for general
game playing. In Proceedings of the 22Nd National Confer-
ence on Artificial Intelligence - Volume 2, AAAI’07, 1134–
1139. AAAI Press.
Eladhari, M. P.; Sullivan, A.; Smith, G.; and McCoy, J. 2011.
Ai-based game design: Enabling new playable experiences.
Technical report, Technical Report, UCSC-SOE-11.
Genesereth, M.; Love, N.; and Pell, B. 2005. General game
playing: Overview of the aaai competition. AI magazine
26(2):62.
Kansky, K.; Silver, T.; Mély, D. A.; Eldawy, M.; Lázaro-
Gredilla, M.; Lou, X.; Dorfman, N.; Sidor, S.; Phoenix, S.;
and George, D. 2017. Schema networks: Zero-shot transfer
with a generative causal model of intuitive physics. arXiv
preprint arXiv:1706.04317.
Ontanón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A survey of real-
time strategy game ai research and competition in starcraft.
IEEE Transactions on Computational Intelligence and AI in
games 5(4):293–311.
Osborn, J. C.; Summerville, A.; and Mateas, M. 2017. Au-
tomatic mapping of nes games with mappy. In Proceedings
of the 2017 Workshop on Procedural Content Generation.
Perez-Liebana, D.; Samothrakis, S.; Togelius, J.; Schaul, T.;
Lucas, S. M.; Couëtoux, A.; Lee, J.; Lim, C.-U.; and Thomp-
son, T. 2016a. The 2014 general video game playing com-
petition. IEEE Transactions on Computational Intelligence
and AI in Games 8(3):229–243.
Perez-Liebana, D.; Samothrakis, S.; Togelius, J.; Schaul, T.;
and Lucas, S. M. 2016b. General video game ai: Competi-
tion, challenges and opportunities. In Thirtieth AAAI Con-
ference on Artificial Intelligence.
Samuel, B.; Ryan, J.; Summerville, A.; Mateas, M.; and
Wardrip-Fruin, N. 2016. Computatrum personae: toward
a role-based taxonomy of (computationally assisted) perfor-
mance. Proceedings of EXAG.
Smith, R. 2007. An overview of the tesseract ocr en-
gine. In Document Analysis and Recognition, 2007. ICDAR
2007. Ninth International Conference on, volume 2, 629–
633. IEEE.
Smith, A. M. 2013. Open problem: Reusable gameplay

trace samplers. In Ninth Artificial Intelligence and Interac-
tive Digital Entertainment Conference.
Summerville, A.; Osborn, J. C.; Holmgård, C.; Zhang, D.;
and Mateas, M. 2017. Mechanics automatically recognized
via interactive observation: Jumping. In Proceedings of the
12th International Conference on the Foundations of Digital
Games.
Summerville, A.; Osborn, J. C.; and Mateas, M. 2017.
Charda: Causal hybrid automata recovery via dynamic anal-
ysis. In Proceedings of the International Joint Conference
on Artificial Intelligence.
Tremblay, J.; Dragert, C.; and Verbrugge, C. 2014. Target
selection for ai companions in fps games. In FDG.
Weber, B. G.; Mateas, M.; and Jhala, A. 2010. Applying
goal-driven autonomy to starcraft. In AIIDE.

98


